Advertisement

Mammalian Genome

, Volume 29, Issue 11–12, pp 831–842 | Cite as

A mouse model of the Δ133p53 isoform: roles in cancer progression and inflammation

  • Marina Kazantseva
  • Sunali Mehta
  • Ramona A. Eiholzer
  • Noelyn Hung
  • Anna Wiles
  • Tania L. Slatter
  • Antony W. BraithwaiteEmail author
Article

Abstract

This review paper outlines studies on the Δ122p53 mouse, a model of the human Δ133p53 isoform, together with studies in other model organisms, cell culture, and where available, clinical investigations. In general, these studies imply that, in contrast to the canonical p53 tumor suppressor, Δ133p53 family members have oncogenic capability. Δ122p53 is multi-functional, conferring survival and proliferative advantages on cells, promoting invasion, metastasis and vascularization, as does Δ133p53. Cancers with high levels of Δ133p53 often have poor prognosis. Δ122p53 mediates its effects through the JAK–STAT and RhoA–ROCK signaling pathways. We propose that Δ133p53 isoforms have evolved as inflammatory signaling molecules to deal with the consequent tissue damage of p53 activation. However, if sustained expression of the isoforms occur, pathologies may result.

Notes

Acknowledgements

We thank Kim Parker for critically reading the manuscript. We also acknowledge financial support from the Health Research Council of NZ, the Royal Society of NZ Marsden Fund, James Cook Fellowship to AWB, and the Cancer Institute NSW.

Compliance with ethical standards

Conflict of interest

The authors declare no potential conflicts of interest.

References

  1. Aldinucci D, Colombatti A (2014) The inflammatory chemokine CCL5 and cancer progression. Mediators Inflamm.  https://doi.org/10.1155/2014/292376 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Ancrile B, Lim KH, Counter CM (2007) Oncogenic Ras-induced secretion of IL6 is required for tumorigenesis. Genes Dev 21:1714–1719PubMedPubMedCentralGoogle Scholar
  3. Aoubala M et al (2011) p53 directly transactivates Delta133p53alpha, regulating cell fate outcome in response to DNA damage. Cell Death Differ 18:248–258PubMedGoogle Scholar
  4. Ara T, Declerck YA (2010) Interleukin-6 in bone metastasis and cancer progression. Eur J Cancer 46:1223–1231PubMedPubMedCentralGoogle Scholar
  5. Arai N et al (1986) Immunologically distinct p53 molecules generated by alternative splicing. Mol Cell Biol 6:3232–3239PubMedPubMedCentralGoogle Scholar
  6. Arsic N et al (2015) The p53 isoform Delta133p53beta promotes cancer stem cell potential. Stem Cell Rep 4:531–540Google Scholar
  7. Arsic N et al (2017) The p53 isoform delta133p53ss regulates cancer cell apoptosis in a RhoB-dependent manner. PLoS ONE 12:e0172125PubMedPubMedCentralGoogle Scholar
  8. Bartels CM, Bridges AJ (2010) Rheumatoid vasculitis: vanishing menace or target for new treatments? Curr Rheumatol Rep 12:414–419PubMedPubMedCentralGoogle Scholar
  9. Bernard H et al (2013) The p53 isoform, Delta133p53alpha, stimulates angiogenesis and tumour progression. Oncogene 32:2150–2160PubMedGoogle Scholar
  10. Bourdon JC et al (2005) p53 isoforms can regulate p53 transcriptional activity. Genes Dev 19:2122–2137PubMedPubMedCentralGoogle Scholar
  11. Brodsky MH et al (2000) Drosophila p53 binds a damage response element at the reaper locus. Cell 101:103–113PubMedGoogle Scholar
  12. Brodsky MH et al (2004) Drosophila melanogaster MNK/Chk2 and p53 regulate multiple DNA repair and apoptotic pathways following DNA damage. Mol Cell Biol 24:1219–1231PubMedPubMedCentralGoogle Scholar
  13. Broughton SE et al (2012) The GM-CSF/IL-3/IL-5 cytokine receptor family: from ligand recognition to initiation of signaling. Immunol Rev 250:277–302PubMedGoogle Scholar
  14. Broughton SE et al (2014) Dual mechanism of interleukin-3 receptor blockade by an anti-cancer antibody. Cell Rep 8:410–419PubMedGoogle Scholar
  15. Campbell HG et al (2012) Does Delta133p53 isoform trigger inflammation and autoimmunity? Cell Cycle 11:446–450PubMedGoogle Scholar
  16. Campbell H et al (2018) 133p53 isoform promotes tumour invasion and metastasis via interleukin-6 activation of JAK-STAT and RhoA-ROCK signalling. Nat Commun 9:254PubMedPubMedCentralGoogle Scholar
  17. Castro C, Gourley M (2010) Diagnostic testing and interpretation of tests for autoimmunity. J Allergy Clin Immunol 125:S238–S247PubMedPubMedCentralGoogle Scholar
  18. Chen J et al (2005) Loss of function of def selectively up-regulates Delta113p53 expression to arrest expansion growth of digestive organs in zebrafish. Genes Dev 19:2900–2911PubMedPubMedCentralGoogle Scholar
  19. Chen J et al (2009) p53 isoform delta113p53 is a p53 target gene that antagonizes p53 apoptotic activity via BclxL activation in zebrafish. Genes Dev 23:278–290PubMedPubMedCentralGoogle Scholar
  20. Cheng SM, Xing B, Li JC, Cheung BK, Lau AS (2007) Interferon-gamma regulation of TNFalpha-induced matrix metalloproteinase 3 expression and migration of human glioma T98G cells. Int J Cancer 121:1190–1196PubMedGoogle Scholar
  21. Cheon H, Borden EC, Stark GR (2014) Interferons and their stimulated genes in the tumor microenvironment. Semin Oncol 41:156–173PubMedPubMedCentralGoogle Scholar
  22. Cieslik P, Hrycek A, Klucinski P (2008) Vasculopathy and vasculitis in systemic lupus erythematosus. Pol Arch Med Wewn 118:57–63PubMedGoogle Scholar
  23. Dankbar B et al (2000) Vascular endothelial growth factor and interleukin-6 in paracrine tumor-stromal cell interactions in multiple myeloma. Blood 95:2630–2636PubMedGoogle Scholar
  24. Donehower LA et al (1992) Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature 356:215–221PubMedGoogle Scholar
  25. Donehower LA et al (1995) Effects of genetic background on tumorigenesis in p53-deficient mice. Mol Carcinog 14:16–22PubMedGoogle Scholar
  26. el-Deiry WS et al (1993) WAF1, a potential mediator of p53 tumor suppression. Cell 75:817–825Google Scholar
  27. el-Deiry WS et al (1995) Topological control of p21WAF1/CIP1 expression in normal and neoplastic tissues. Cancer Res 55:2910–2919PubMedGoogle Scholar
  28. Fan Y et al (2010) Dual roles of Drosophila p53 in cell death and cell differentiation. Cell Death Differ 17:912–921PubMedGoogle Scholar
  29. Fischer M (2017) Census and evaluation of p53 target genes. Oncogene 36:3943–3956PubMedPubMedCentralGoogle Scholar
  30. Fragou A et al (2017) Increased Delta133p53 mRNA in lung carcinoma corresponds with reduction of p21 expression. Mol Med Rep 15:1455–1460PubMedPubMedCentralGoogle Scholar
  31. Francisco-Cruz A et al (2014) Granulocyte-macrophage colony-stimulating factor: not just another haematopoietic growth factor. Med Oncol 31:774PubMedGoogle Scholar
  32. Fu Q et al (2016) Valosin-containing protein (VCP) promotes the growth, invasion, and metastasis of colorectal cancer through activation of STAT3 signaling. Mol Cell Biochem 418:189–198PubMedPubMedCentralGoogle Scholar
  33. Fujita K et al (2009) p53 isoforms Delta133p53 and p53beta are endogenous regulators of replicative cellular senescence. Nat Cell Biol 11:1135–1142PubMedPubMedCentralGoogle Scholar
  34. Gadea G et al (2016) TP53 drives invasion through expression of its ∆133p53β variant. eLife 5:e14734PubMedPubMedCentralGoogle Scholar
  35. Garcia PB, Attardi LD (2014) Illuminating p53 function in cancer with genetically engineered mouse models. Semin Cell Dev Biol 27:74–85PubMedGoogle Scholar
  36. Gong L et al (2015) p53 isoform Delta113p53/Delta133p53 promotes DNA double-strand break repair to protect cell from death and senescence in response to DNA damage. Cell Res 25:351–369PubMedPubMedCentralGoogle Scholar
  37. Gudkov AV, Gurova KV, Komarova EA (2011) Inflammation and p53: a tale of two stresses. Genes Cancer 2:503–516PubMedPubMedCentralGoogle Scholar
  38. Hagemann T et al (2004) Enhanced invasiveness of breast cancer cell lines upon co-cultivation with macrophages is due to TNF-alpha dependent up-regulation of matrix metalloproteases. Carcinogenesis 25:1543–1549PubMedGoogle Scholar
  39. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674PubMedPubMedCentralGoogle Scholar
  40. Hofstetter G et al (2010) Alternative splicing of p53 and p73: the novel p53 splice variant p53delta is an independent prognostic marker in ovarian cancer. Oncogene 29:1997–2004PubMedGoogle Scholar
  41. Hong JY et al (2017) Clinical impact of serum survivin positivity and tissue expression of EBV-encoded RNA in diffuse large B-cell lymphoma patients treated with rituximab-CHOP. Oncotarget 8:13782–13791PubMedPubMedCentralGoogle Scholar
  42. Horikawa I et al (2017) Delta133p53 represses p53-inducible senescence genes and enhances the generation of human induced pluripotent stem cells. Cell Death Differ 24:1017–1028PubMedPubMedCentralGoogle Scholar
  43. Horn HF, Vousden KH (2007) Coping with stress: multiple ways to activate p53. Oncogene 26:1306–1316PubMedGoogle Scholar
  44. Huang SP et al (2004) Interleukin-6 increases vascular endothelial growth factor and angiogenesis in gastric carcinoma. J Biomed Sci 11:517–527PubMedGoogle Scholar
  45. Ikutani M et al (2012) Identification of innate IL-5-producing cells and their role in lung eosinophil regulation and antitumor immunity. J Immunol 188:703–713PubMedGoogle Scholar
  46. Ji W et al (2015) Expression of p53beta and Delta133p53 isoforms in different gastric tissues. Int J Clin Exp Pathol 8:10468–10474PubMedPubMedCentralGoogle Scholar
  47. Kaneda K et al (2004) Autoimmune response to proteins of proliferating cell nuclear antigen multiprotein complexes in patients with connective tissue diseases. J Rheumatol 31:2142–2150PubMedGoogle Scholar
  48. Khoury MP, Bourdon JC (2011) p53 Isoforms: an intracellular microprocessor? Genes Cancer 2:453–465PubMedPubMedCentralGoogle Scholar
  49. Kruiswijk F, Labuschagne CF, Vousden KH (2015) p53 in survival, death and metabolic health: a lifeguard with a licence to kill. Nat Rev Mol Cell Biol 16:393–405PubMedGoogle Scholar
  50. Kubbutat MH, Jones SN, Vousden KH (1997) Regulation of p53 stability by Mdm2. Nature 387:299–303PubMedGoogle Scholar
  51. Kursunel MA, Esendagli G (2016) The untold story of IFN-gamma in cancer biology. Cytokine Growth Factor Rev 31:73–81PubMedGoogle Scholar
  52. Lederle W et al (2011) IL-6 promotes malignant growth of skin SCCs by regulating a network of autocrine and paracrine cytokines. Int J Cancer 128:2803–2814PubMedGoogle Scholar
  53. Lee EJ et al (2013) Interleukin-5 enhances the migration and invasion of bladder cancer cells via ERK1/2-mediated MMP-9/NF-kappaB/AP-1 pathway: involvement of the p21WAF1 expression. Cell Signal 25:2025–2038PubMedGoogle Scholar
  54. Liu L, Zhang M, Zou P (2007) Expression of PLK1 and survivin in diffuse large B-cell lymphoma. Leuk Lymphoma 48:2179–2183PubMedGoogle Scholar
  55. Liu K et al (2017) The Delta133p53 isoform reduces Wtp53-induced stimulation of DNA Pol GAMMA activity in the presence and absence of D4T. Aging Dis 8:228–239PubMedPubMedCentralGoogle Scholar
  56. Lowe J, Resnick SM, Menendez MA (2013) D. Modulation of immune responses by the tumor suppressor p53. BioDiscovery 8:2Google Scholar
  57. Lozano G (2010) Mouse models of p53 functions. Cold Spring Harb Perspect Biol 2:a001115PubMedPubMedCentralGoogle Scholar
  58. Machado-Silva A, Perrier S, Bourdon JC (2010) p53 family members in cancer diagnosis and treatment. Semin Cancer Biol 20:57–62PubMedGoogle Scholar
  59. Maier B et al (2004) Modulation of mammalian life span by the short isoform of p53. Genes Dev 18:306–319PubMedPubMedCentralGoogle Scholar
  60. Malkin D et al (1990) Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas, and other neoplasms. Science 250:1233–1238PubMedGoogle Scholar
  61. Marcel V et al (2010) Delta160p53 is a novel N-terminal p53 isoform encoded by Delta133p53 transcript. FEBS Lett 584:4463–4468PubMedGoogle Scholar
  62. Marcel V et al (2011a) G-quadruplex structures in TP53 intron 3: role in alternative splicing and in production of p53 mRNA isoforms. Carcinogenesis 32:271–278PubMedGoogle Scholar
  63. Marcel V et al (2011b) Biological functions of p53 isoforms through evolution: lessons from animal and cellular models. Cell Death Differ 18:1815–1824PubMedPubMedCentralGoogle Scholar
  64. Mehta S et al (2016) A study of TP53 RNA splicing illustrates pitfalls of RNA-seq methodology. Cancer Res 76:7151–7159PubMedGoogle Scholar
  65. Mighty KK, Laimins LA (2014) The role of human papillomaviruses in oncogenesis. Recent Results Cancer Res 193:135–148PubMedGoogle Scholar
  66. Mondal AM et al (2013) p53 isoforms regulate aging- and tumor-associated replicative senescence in T lymphocytes. J Clin Invest 123:5247–5257PubMedPubMedCentralGoogle Scholar
  67. Muller PA, Vousden KH, Norman JC (2011) p53 and its mutants in tumor cell migration and invasion. J Cell Biol 192:209–218PubMedPubMedCentralGoogle Scholar
  68. Munoz-Fontela C, Mandinova A, Aaronson SA, Lee SW (2016) Emerging roles of p53 and other tumour-suppressor genes in immune regulation. Nat Rev Immunol 16:741–750PubMedPubMedCentralGoogle Scholar
  69. Nabors LB et al (2003) Tumor necrosis factor alpha induces angiogenic factor up-regulation in malignant glioma cells: a role for RNA stabilization and HuR. Cancer Res 63:4181–4187PubMedGoogle Scholar
  70. Nakano K, Vousden KH (2001) PUMA, a novel proapoptotic gene, is induced by p53. Mol Cell 7:683–694Google Scholar
  71. Nutthasirikul N, Limpaiboon T, Leelayuwat C, Patrakitkomjorn S, Jearanaikoon P (2013) Ratio disruption of the 133p53 and TAp53 isoform equilibrium correlates with poor clinical outcome in intrahepatic cholangiocarcinoma. Int J Oncol 42:1181–1188PubMedGoogle Scholar
  72. Olive KP et al (2004) Mutant p53 gain of function in two mouse models of Li-Fraumeni syndrome. Cell 119:847–860PubMedGoogle Scholar
  73. Ollmann M et al (2000) Drosophila p53 is a structural and functional homolog of the tumor suppressor p53. Cell 101:91–101PubMedGoogle Scholar
  74. Parameswaran N, Patial S (2010) Tumor necrosis factor-alpha signaling in macrophages. Crit Rev Eukaryot Gene Expr 20:87–103PubMedPubMedCentralGoogle Scholar
  75. Powell E, Piwnica-Worms D, Piwnica-Worms H (2014) Contribution of p53 to metastasis. Cancer Discov 4:405–414PubMedPubMedCentralGoogle Scholar
  76. Pratesi F et al (2000) Autoantibodies specific for alpha-enolase in systemic autoimmune disorders. J Rheumatol 27:109–115PubMedGoogle Scholar
  77. Roth I et al (2016) The Delta133p53 isoform and its mouse analogue Delta122p53 promote invasion and metastasis involving pro-inflammatory molecules interleukin-6 and CCL2. Oncogene 35:4981–4989PubMedGoogle Scholar
  78. Sawhney S et al (2015) Alpha-enolase is upregulated on the cell surface and responds to plasminogen activation in mice expressing a 133p53alpha mimic. PLoS ONE 10:e0116270PubMedPubMedCentralGoogle Scholar
  79. Senturk S et al (2014) p53Psi is a transcriptionally inactive p53 isoform able to reprogram cells toward a metastatic-like state. Proc Natl Acad Sci USA 111:E3287–E3296PubMedGoogle Scholar
  80. Sharathchandra A, Katoch A, Das S (2014) IRES mediated translational regulation of p53 isoforms. Wiley Interdiscip Rev RNA 5:131–139PubMedGoogle Scholar
  81. Shi Y et al (2006) Granulocyte-macrophage colony-stimulating factor (GM-CSF) and T-cell responses: what we do and don’t know. Cell Res 16:126–133PubMedGoogle Scholar
  82. Simson L et al (2007) Regulation of carcinogenesis by IL-5 and CCL11: a potential role for eosinophils in tumor immune surveillance. J Immunol 178:4222–4229PubMedGoogle Scholar
  83. Slatter TL et al (2011) Hyperproliferation, cancer, and inflammation in mice expressing a Delta133p53-like isoform. Blood 117:5166–5177PubMedGoogle Scholar
  84. Slatter TL et al (2015) Delta122p53, a mouse model of Delta133p53alpha, enhances the tumor-suppressor activities of an attenuated p53 mutant. Cell Death Dis 6:e1783PubMedPubMedCentralGoogle Scholar
  85. Song W et al (2009) Expression of p53 isoforms in renal cell carcinoma. Chin Med J (Engl) 122:921–926Google Scholar
  86. Tamura H, Schulman SA (1971) Barrett—type esophagus associated with squamous carcinoma. Chest 59:330–333PubMedGoogle Scholar
  87. Telerman A, Amson R (2009) The molecular programme of tumour reversion: the steps beyond malignant transformation. Nat Rev Cancer 9:206–216PubMedGoogle Scholar
  88. Teodoro JG, Evans SK, Green MR (2007) Inhibition of tumor angiogenesis by p53: a new role for the guardian of the genome. J Mol Med (Berl) 85:1175–1186Google Scholar
  89. Terzić J, Grivennikov S, Karin E, Karin M (2010) Inflammation and colon cancer. Gastroenterology 138(6):2101–2114 e5PubMedGoogle Scholar
  90. Turnquist C et al (2016) p53 isoforms regulate astrocyte-mediated neuroprotection and neurodegeneration. Cell Death Differ 23:1515–1528PubMedPubMedCentralGoogle Scholar
  91. von Muhlinen N et al (2018) p53 isoforms regulate premature aging in human cells. Oncogene 37(18):2379Google Scholar
  92. Wang X, Lin Y (2008) Tumor necrosis factor and cancer, buddies or foes? Acta Pharmacol Sin 29:1275–1288PubMedPubMedCentralGoogle Scholar
  93. Wang SW et al (2015) CCL5/CCR5 axis induces vascular endothelial growth factor-mediated tumor angiogenesis in human osteosarcoma microenvironment. Carcinogenesis 36:104–114PubMedGoogle Scholar
  94. Watanuki-Miyauchi R et al (2005) Expression of survivin and of antigen detected by a novel monoclonal antibody, T332, is associated with outcome of diffuse large B-cell lymphoma and its subtypes. Pathol Int 55:324–330PubMedGoogle Scholar
  95. Wei LH et al (2003) Interleukin-6 promotes cervical tumor growth by VEGF-dependent angiogenesis via a STAT3 pathway. Oncogene 22:1517–1527PubMedGoogle Scholar
  96. Wei J et al (2012) Pathogenic bacterium Helicobacter pylori alters the expression profile of p53 protein isoforms and p53 response to cellular stresses. Proc Natl Acad Sci USA 109:E2543–E2550PubMedGoogle Scholar
  97. Wolf D, Harris N, Goldfinger N, Rotter V (1985) Isolation of a full-length mouse cDNA clone coding for an immunologically distinct p53 molecule. Mol Cell Biol 5:127–132PubMedPubMedCentralGoogle Scholar
  98. Xie N et al (2017) SRSF1 promotes vascular smooth muscle cell proliferation through a Delta133p53/EGR1/KLF5 pathway. Nat Commun 8:16016PubMedPubMedCentralGoogle Scholar
  99. Yadav A, Kumar B, Datta J, Teknos TN, Kumar P (2011) IL-6 promotes head and neck tumor metastasis by inducing epithelial-mesenchymal transition via the JAK-STAT3-SNAIL signaling pathway. Mol Cancer Res 9:1658–1667PubMedPubMedCentralGoogle Scholar
  100. Yang L, Karin M (2014) Roles of tumor suppressors in regulating tumor-associated inflammation. Cell Death Differ 21:1677–1686PubMedPubMedCentralGoogle Scholar
  101. Zaidi MR, Merlino G (2011) The two faces of interferon-gamma in cancer. Clin Cancer Res 17:6118–6124PubMedPubMedCentralGoogle Scholar
  102. Zhou H et al (2018) Elevated transgelin/TNS1 expression is a potential biomarker in human colorectal cancer. Oncotarget 9:1107–1113PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Marina Kazantseva
    • 1
    • 2
  • Sunali Mehta
    • 1
    • 2
  • Ramona A. Eiholzer
    • 1
  • Noelyn Hung
    • 1
  • Anna Wiles
    • 1
  • Tania L. Slatter
    • 1
    • 2
  • Antony W. Braithwaite
    • 1
    • 2
    Email author
  1. 1.Department of Pathology, Dunedin School of MedicineUniversity of OtagoDunedinNew Zealand
  2. 2.Maurice Wilkins Centre for Molecular BiodiscoveryUniversity of OtagoDunedinNew Zealand

Personalised recommendations