Advertisement

Mammalian Genome

, Volume 29, Issue 5–6, pp 310–324 | Cite as

Genome-wide association for testis weight in the diversity outbred mouse population

  • Joshua T. Yuan
  • Daniel M. Gatti
  • Vivek M. Philip
  • Steven Kasparek
  • Andrew M. Kreuzman
  • Benjamin Mansky
  • Kayvon Sharif
  • Dominik Taterra
  • Walter M. Taylor
  • Mary Thomas
  • Jeremy O. Ward
  • Andrew Holmes
  • Elissa J. Chesler
  • Clarissa C. Parker
Article

Abstract

Testis weight is a genetically mediated trait associated with reproductive efficiency across numerous species. We sought to evaluate the genetically diverse, highly recombinant Diversity Outbred (DO) mouse population as a tool to identify and map quantitative trait loci (QTLs) associated with testis weight. Testis weights were recorded for 502 male DO mice and the mice were genotyped on the GIGAMuga array at ~ 143,000 SNPs. We performed a genome-wide association analysis and identified one significant and two suggestive QTLs associated with testis weight. Using bioinformatic approaches, we developed a list of candidate genes and identified those with known roles in testicular size and development. Candidates of particular interest include the RNA demethylase gene Alkbh5, the cyclin-dependent kinase inhibitor gene Cdkn2c, the dynein axonemal heavy chain gene Dnah11, the phospholipase D gene Pld6, the trans-acting transcription factor gene Sp4, and the spermatogenesis-associated gene Spata6, each of which has a human ortholog. Our results demonstrate the utility of DO mice in high-resolution genetic mapping of complex traits, enabling us to identify developmentally important genes in adult mice. Understanding how genetic variation in these genes influence testis weight could aid in the understanding of mechanisms of mammalian reproductive function.

Notes

Funding

Funding was provided by National Institute of General Medical Sciences (Grant No. P20-GM-103449).

Compliance with ethical standards

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Supplementary material

335_2018_9745_MOESM1_ESM.pptx (544 kb)
Supplementary material 1 (PPTX 543 KB)
335_2018_9745_MOESM2_ESM.docx (21 kb)
Supplementary material 2 (DOCX 20 KB)
335_2018_9745_MOESM3_ESM.xlsx (18 kb)
Supplementary material 3 (XLSX 17 KB)
335_2018_9745_MOESM4_ESM.xlsx (25 kb)
Supplementary material 4 (XLSX 25 KB)
335_2018_9745_MOESM5_ESM.xlsx (12 kb)
Supplementary material 5 (XLSX 12 KB)
335_2018_9745_MOESM6_ESM.xlsx (18 kb)
Supplementary material 6 (XLSX 17 KB)
335_2018_9745_MOESM7_ESM.xlsx (22 kb)
Supplementary material 7 (XLSX 21 KB)
335_2018_9745_MOESM8_ESM.xlsx (69 kb)
Supplementary material 8 (XLSX 69 KB)
335_2018_9745_MOESM9_ESM.xls (447 kb)
Supplementary material 9 (XLS 447 KB)
335_2018_9745_MOESM10_ESM.xls (99 kb)
Supplementary material 10 (XLS 99 KB)
335_2018_9745_MOESM11_ESM.xls (562 kb)
Supplementary material 11 (XLS 561 KB)

References

  1. Aschard H, Vilhjálmsson BJ, Joshi AD, Price AL, Kraft P (2015) Adjusting for heritable covariates can bias effect estimates in genome-wide association studies. Am J Hum Genet 96(2):329–339CrossRefPubMedPubMedCentralGoogle Scholar
  2. Awata S, Heg D, Munehara H, Kohda M (2006) Testis size depends on social status and the presence of male helpers in the cooperatively breeding cichlid Julidochromis ornatus. Behav Ecol 17(3):372–379CrossRefGoogle Scholar
  3. Beffert U, Farsian FN, Masiulis I, Hammer RE, Yoon SO, Giehl KM, Herz J (2006) ApoE receptor 2 controls neuronal survival in the adult brain. Curr Biol 16(24):2446–2452CrossRefPubMedGoogle Scholar
  4. Blake JA, Eppig JT, Kadin JA, Richardson JE, Smith CL, Bult CJ (2017) Mouse Genome Database (MGD)-2017: community knowledge resource for the laboratory mouse. Nucleic Acids Res 45(D1):D723–D729CrossRefPubMedGoogle Scholar
  5. Bolor H, Wakasugi N, Zhao WD, Ishikawa A (2006) Detection of quantitative trait loci causing abnormal spermatogenesis and reduced testis weight in the small testis (Smt) mutant mouse. Exp Anim 55(2):97–108CrossRefPubMedGoogle Scholar
  6. Broxmeyer HE, Franklin DS, Cooper S, Hangoc G, Mantel C (2011) Cyclin dependent kinase inhibitors differentially modulate synergistic cytokine responsiveness of hematopoietic progenitor cells. Stem Cells Dev 21(10):1597–1603CrossRefPubMedPubMedCentralGoogle Scholar
  7. Chang PL, Kopania E, Keeble S, Sarver BAJ, Larson E, Orth A, Belkhir K, Boursot P, Bonhomme F, Good JM, Dean MD (2017) Whole exome sequencing of wild-derived inbred strains of mice improves power to link phenotype and genotype. Mamm Genome 28(9–10):416–425CrossRefPubMedGoogle Scholar
  8. Cheng R, Palmer AA (2013) A simulation study of permutation, bootstrap, and gene dropping for assessing statistical significance in the case of unequal relatedness. Genetics 193(3):1015–1018CrossRefPubMedPubMedCentralGoogle Scholar
  9. Chesler EJ (2014) Out of the bottleneck: the Diversity Outcross and Collaborative Cross mouse populations in behavioral genetics research. Mamm Genome 25(1–2):3–11CrossRefPubMedGoogle Scholar
  10. Chesler EJ, Lu L, Wang J, Williams RW, Manly KF (2004) WebQTL: rapid exploratory analysis of gene expression and genetic networks for brain and behavior. Nat Neurosci 7(5):485–486CrossRefPubMedGoogle Scholar
  11. Chesler EJ, Miller DR, Branstetter LR, Galloway LD, Jackson BL, Philip VM, Voy BH, Culiat CT, Threadgill DW, Williams RW, Churchill GA, Johnson DK, Manly KF (2008) The Collaborative Cross at Oak Ridge National Laboratory: developing a powerful resource for systems genetics. Mamm Genome 19(6):382–389CrossRefPubMedPubMedCentralGoogle Scholar
  12. Chesler EJ, Gatti DM, Morgan AP, Strobel M, Trepanier L, Oberbeck D, McWeeny S, Hitzemann R, Ferris M, Clayshultle A, Bell TA, Manuel de Villena, FP, Churchill GA (2016) Diversity Outbred mice at 21: maintaining allelic variation in the face of selection. G3 6(12):3893–3902CrossRefPubMedGoogle Scholar
  13. Chubb C (1992) Genes regulating testes size. Biol Reprod 47(1):29–36CrossRefPubMedGoogle Scholar
  14. Church RJ, Gatti DM, Urban TJ, Long N, Yang X, Shi Q et al (2015) Sensitivity to hepatotoxicity due to epigallocatechin gallate is affected by genetic background in diversity outbred mice. Food Chem Toxicol 76:19–26CrossRefPubMedGoogle Scholar
  15. Churchill GA, Airey DC, Allayee H, Angel JM, Attie AD, Beatty J et al (2004) The Collaborative Cross, a community resource for the genetic analysis of complex traits. Nat Genet 36(11):1133–1137CrossRefPubMedGoogle Scholar
  16. Churchill GA, Gatti DM, Munger SC, Svenson KL (2012) The diversity outbred mouse population. Mamm Genome 23(9–10):713–718CrossRefPubMedPubMedCentralGoogle Scholar
  17. Coulter GH, Rounsaville TR, Foote RH (1976) Heritability of testicular size and consistency in Holstein bulls. J Anim Sci 43(1):9–12CrossRefPubMedGoogle Scholar
  18. Delgadillo JA, Cortez ME, Duarte G, Chemineau P, Malpaux B (2004) Evidence that the photoperiod controls the annual changes in testosterone secretion, testicular and body weight in subtropical male goats. Reprod Nutr Dev 44(3):183–193CrossRefPubMedGoogle Scholar
  19. Flint J (2011) Mapping quantitative traits and strategies to find quantitative trait genes. Methods 53(2):163–174CrossRefPubMedPubMedCentralGoogle Scholar
  20. Forand A, Fouchet P, Lahaye JB, Chicheportiche A, Habert R, Bernardino-Sgherri J (2009) Similarities and differences in the in vivo response of mouse neonatal gonocytes and spermatogonia to genotoxic stress. Biol Reprod 80(5):860–873CrossRefPubMedGoogle Scholar
  21. Fossceco SL, Notter DR (1995) Heritabilities and genetic correlations of body weight, testis growth and ewe lamb reproductive traits in crossbred sheep. Anim Sci 60(02):185–195CrossRefGoogle Scholar
  22. Franklin DS, Godfrey VL, Lee H, Kovalev GI, Schoonhoven R, Chen-Kiang S et al (1998) CDK inhibitors p18INK4c and p27Kip1 mediate two separate pathways to collaboratively suppress pituitary tumorigenesis. Genes Dev 12(18):2899–2911CrossRefPubMedPubMedCentralGoogle Scholar
  23. French JE, Gatti DM, Morgan DL, Kissling GE, Shockley KR, Knudsen GA, Shepard KG, Price HC, King D, Witt KL, Pedersen LC (2015) Diversity outbred mice identify population-based exposure thresholds and genetic factors that influence benzene-induced genotoxicity. Environ Health Perspect 123(3):237PubMedCrossRefGoogle Scholar
  24. Gatti DM, Svenson KL, Shabalin A, Wu LY, Valdar W, Simecek P et al (2014) Quantitative trait locus mapping methods for diversity outbred mice. G3 4(9):1623–1633CrossRefPubMedGoogle Scholar
  25. Gatti DM, French JE, Schughart K (2016) QTL mapping and identification of candidate genes in DO mice: a use case model derived from a benzene toxicity experiment. Methods Mol Biol 1488:265–281CrossRefGoogle Scholar
  26. Gatti DM, Weber SN, Goodwin NC, Lammert F, Churchill GA (2017) Genetic background influences susceptibility to chemotherapy-induced hematotoxicity. Pharmacogenomics J.  https://doi.org/10.1038/tpj.2017.23 PubMedPubMedCentralCrossRefGoogle Scholar
  27. Golas A, Dzieza A, Kuzniarz K, Styrna J (2008) Gene mapping of sperm quality parameters in recombinant inbred strains of mice. Int J Dev Biol 52(2–3):287–293CrossRefPubMedGoogle Scholar
  28. Göllner H, Bouwman P, Mangold M, Karis A, Braun H, Rohner I et al (2001) Complex phenotype of mice homozygous for a null mutation in the Sp4 transcription factor gene. Genes Cells 6(8):689–697CrossRefPubMedGoogle Scholar
  29. Guichard C, Harricane MC, Lafitte JJ, Godard P, Zaegel M, Tack V et al (2001) Axonemal dynein intermediate-chain gene (DNAI1) mutations result in situs inversus and primary ciliary dyskinesia (Kartagener syndrome). Am J Hum Genet 68(4):1030–1035CrossRefPubMedPubMedCentralGoogle Scholar
  30. Handel MA, Lane PW, Schroeder AC, Davisson MT (1988) New mutation causing sterility in the mouse. Mol Reprod Dev 21(4):409–423Google Scholar
  31. Harcourt AH, Harvey PH, Larson SG, Short RV (1981) Testis weight, body weight and breeding system in primates. Nature 293(5827):55–57CrossRefPubMedGoogle Scholar
  32. Hardy S, Kitamura M, Harris-Stansil T, Dai Y, Phipps ML (1997) Construction of adenovirus vectors through Cre-lox recombination. J Virol 71(3):1842–1849PubMedPubMedCentralGoogle Scholar
  33. Holmes MV, Smith GD (2018) Problems in interpreting and using GWAS of conditional phenotypes illustrated by ‘alcohol GWAS’. Mol Psychiatry.  https://doi.org/10.1038/s41380-018-0037-1 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Huang H, Gao Q, Peng X, Choi SY, Sarma K, Ren H et al (2011) piRNA-associated germline nuage formation and spermatogenesis require MitoPLD profusogenic mitochondrial-surface lipid signaling. Dev Cell 20(3):376–387CrossRefPubMedPubMedCentralGoogle Scholar
  35. Huo S, Du W, Peng Shi YS, Zhao S (2015) The role of spermatogenesis-associated protein 6 in testicular germ cell tumors. Int J Clin Exp Pathol 8(8):9119PubMedPubMedCentralGoogle Scholar
  36. Johannes F, Porcher E, Teixeira FK, Saliba-Colombani V, Simon M, Agier N et al (2009) Assessing the impact of transgenerational epigenetic variation on complex traits. PLoS Genet 5(6):e1000530CrossRefPubMedPubMedCentralGoogle Scholar
  37. King EG, Long AD (2017) The Beavis effect in next-generation mapping panels in Drosophila melanogaster. G3 7(6):1643–1652PubMedGoogle Scholar
  38. Kruczek M, Styrna J (2009) Semen quantity and quality correlate with bank vole males’ social status. Behav Proc 82(3):279–285CrossRefGoogle Scholar
  39. L’Hôte D, Serres C, Laissue P, Oulmouden A, Rogel-Gaillard C, Montagutelli X, Vaiman D (2007) Centimorgan-range one-step mapping of fertility traits using interspecific recombinant congenic mice. Genetics 176(3):1907–1921CrossRefPubMedPubMedCentralGoogle Scholar
  40. Latres E, Malumbres M, Sotillo R, Martín J, Ortega S, Martín-Caballero J et al (2000) Limited overlapping roles of P15INK4b and P18INK4c cell cycle inhibitors in proliferation and tumorigenesis. EMBO J 19(13):3496–3506CrossRefPubMedPubMedCentralGoogle Scholar
  41. Le Roy I, Tordjman S, Migliore-Samour D, Degrelle H, Roubertoux PL (2001) Genetic architecture of testis and seminal vesicle weights in mice. Genetics 158(1):333–340PubMedPubMedCentralGoogle Scholar
  42. Lin C, Yin Y, Bell SM, Veith GM, Chen H, Huh SH et al (2013) Delineating a conserved genetic cassette promoting outgrowth of body appendages. PLoS Genet 9(1):e1003231CrossRefPubMedPubMedCentralGoogle Scholar
  43. Logan RW, Robledo RF, Recla JM, Philip VM, Bubier JA, Jay JJ et al (2013) High-precision genetic mapping of behavioral traits in the diversity outbred mouse population. Genes Brain Behav 12(4):424–437CrossRefPubMedPubMedCentralGoogle Scholar
  44. Lusis AJ, Seldine MM, Allayee H, Bennett BJ, Civelek M, Davis RC, Eskin E, Farber CR, Hui S, Mehrabian M, Norheim F, Pan C, Parks B, Rau CD, Smith DJ, Vallim T, Wang Y, Wang J (2016) The Hybrid Mouse Diversity Panel: a resource for systems genetics analyses of metabolic and cardiovascular traits. J Lipid Res 57(6):925–942CrossRefPubMedPubMedCentralGoogle Scholar
  45. MacArthur J, Bowler E, Cerezo M, Gil L, Hall P, Hastings E et al (2017) The new NHGRI-EBI Catalog of published genome-wide association studies (GWAS Catalog). Nucleic Acids Res 45(D1):D896–D901CrossRefPubMedGoogle Scholar
  46. Maruska KP, Fernald RD (2011) Plasticity of the reproductive axis caused by social status change in an african cichlid fish: II. testicular gene expression and spermatogenesis. Endocrinology 152(1):291–302CrossRefPubMedGoogle Scholar
  47. McGrath J, Somlo S, Makova S, Tian X, Brueckner M (2003) Two populations of node monocilia initiate left-right asymmetry in the mouse. Cell 114(1):61–73CrossRefPubMedGoogle Scholar
  48. Mendis SH, Meachem SJ, Sarraj MA, Loveland KL (2011) Activin A balances Sertoli and germ cell proliferation in the fetal mouse testis. Biol Reprod 84(2):379–391CrossRefPubMedGoogle Scholar
  49. Meng G, Zhang F, Fuss I, Kitani A, Strober W (2009) A mutation in the Nlrp3 gene causing inflammasome hyperactivation potentiates Th17 cell-dominant immune responses. Immunity 30(6):860–874CrossRefPubMedPubMedCentralGoogle Scholar
  50. Mithraprabhu S, Mendis S, Meachem SJ, Tubino L, Matzuk MM, Brown CW, Loveland KL (2010) Activin bioactivity affects germ cell differentiation in the postnatal mouse testis in vivo 1. Biol Reprod 82(5):980–990CrossRefPubMedPubMedCentralGoogle Scholar
  51. Morgan AP, Fu CP, Kao CY, Welsh CE, Didion JP, Yadgary L et al (2015) The mouse universal genotyping array: from substrains to subspecies. G3 6(2):263–279CrossRefPubMedGoogle Scholar
  52. Mulligan MK, Wang X, Adler AL, Mozhui K, Lu L, Williams RW (2012) Complex control of GABA (A) receptor subunit mRNA expression: variation, covariation, and genetic regulation. PLoS ONE, 7(4):e34586CrossRefPubMedPubMedCentralGoogle Scholar
  53. Oh C, Aho H, Shamsadin R, Nayernia K, Müller C, Sancken U et al (2003) Characterization, expression pattern and chromosomal localization of the spermatogenesis associated 6 gene (Spata6). Mol Hum Reprod 9(6):321–330CrossRefPubMedGoogle Scholar
  54. Oka A, Mita A, Sakurai-Yamatani N, Yamamoto H, Takagi N, Takano-Shimizu T et al (2004) Hybrid breakdown caused by substitution of the X chromosome between two mouse subspecies. Genetics 166(2):913–924CrossRefPubMedPubMedCentralGoogle Scholar
  55. Oliver TA, Garfield DA, Manier MK, Haygood R, Wray GA, Palumbi SR (2010) Whole-genome positive selection and habitat-driven evolution in a shallow and deep-sea urchin. Genome Biol Evol 2:800–814CrossRefPubMedPubMedCentralGoogle Scholar
  56. Ortavant R, Bocquier F, Pelletier J, Ravault JP, Thimonier J, Volland-Nail P (1988) Seasonality of reproduction in sheep and its control by photoperiod. Aust J Biol Sci 41(1):69–86PubMedGoogle Scholar
  57. Parker CC, Palmer AA (2011) Dark matter: are mice the solution to missing heritability? Front Genet 2:32CrossRefPubMedPubMedCentralGoogle Scholar
  58. Parker CC, Cheng R, Sokoloff G, Lim JE, Skol AD, Abney M, Palmer AA (2011) Fine-mapping alleles for body weight in LG/J × SM/J F2 and F34 advanced intercross lines. Mamm Genome 22(9–10):563CrossRefPubMedPubMedCentralGoogle Scholar
  59. Parker CC, Gopalakrishnan S, Carbonetto P, Gonzales NM, Leung E, Park YJ et al (2016) Genome-wide association study of behavioral, physiological and gene expression traits in outbred CFW mice. Nat Genet 48(8):919–926CrossRefPubMedPubMedCentralGoogle Scholar
  60. Pennarun G, Escudier E, Chapelin C, Bridoux AM, Cacheux V, Roger G et al (1999) Loss-of-function mutations in a human gene related to Chlamydomonas reinhardtii dynein IC78 result in primary ciliary dyskinesia. Am J Hum Genet 65(6):1508–1519CrossRefPubMedPubMedCentralGoogle Scholar
  61. Recla JM, Robledo RF, Gatti DM, Bult CJ, Churchill GA, Chesler EJ (2014) Precise genetic mapping and integrative bioinformatics in Diversity Outbred mice reveals Hydin as a novel pain gene. Mamm Genome 25(5–6):211–222CrossRefPubMedPubMedCentralGoogle Scholar
  62. Rocha JL, Eisen EJ, Van Vleck LD, Pomp D (2004) A large-sample QTL study in mice: II. Body composition. Mamm Genome 15(2):100–113CrossRefPubMedGoogle Scholar
  63. Rowell EA, Wang L, Chunder N, Hancock WW, Wells AD (2014) Regulation of T cell differentiation and alloimmunity by the cyclin-dependent kinase inhibitor p18ink4c. PLoS ONE, 9(3):e91587CrossRefPubMedPubMedCentralGoogle Scholar
  64. Ryu KY, Sinnar SA, Reinholdt LG, Vaccari S, Hall S, Garcia MA et al (2008) The mouse polyubiquitin gene Ubb is essential for meiotic progression. Mol Cell Biol 28(3):1136–1146CrossRefPubMedGoogle Scholar
  65. Setchell JM, Dixson AF (2001) Changes in the secondary sexual adornments of male mandrills (Mandrillus sphinx) are associated with gain and loss of alpha status. Horm Behav 39(3):177–184CrossRefPubMedGoogle Scholar
  66. Sharpe RM (2001) Hormones and testis development and the possible adverse effects of environmental chemicals. Toxicol Lett 120(1):221–232CrossRefPubMedGoogle Scholar
  67. Shorter JR, Odet F, Aylor DL, Pan W, Kao CY, Fu CP et al (2017a) Male infertility is responsible for nearly half of the extinction observed in the mouse Collaborative Cross. Genetics 206(2):557–572CrossRefPubMedPubMedCentralGoogle Scholar
  68. Shorter JR, Huang W, Beak JY, Hua K, Gatti DM, de Villena FPM et al (2017b) Quantitative trait mapping in Diversity Outbred mice identifies two genomic regions associated with heart size. Mamm Genome 29:1–10Google Scholar
  69. Simmons LW, García-González F (2008) Evolutionary reduction in testes size and competitive fertilization success in response to the experimental removal of sexual selection in dung beetles. Evolution 62(10):2580–2591CrossRefPubMedGoogle Scholar
  70. Smallwood TL, Gatti DM, Quizon P, Weinstock GM, Jung KC, Zhao L et al (2014) High-resolution genetic mapping in the diversity outbred mouse population identifies Apobec1 as a candidate gene for atherosclerosis. G3 4(12):2353–2363CrossRefPubMedGoogle Scholar
  71. Solomon DA, Kim JS, Jenkins S, Ressom H, Huang M, Coppa N et al (2008) Identification of p18INK4c as a tumor suppressor gene in glioblastoma multiforme. Can Res 68(8):2564–2569CrossRefGoogle Scholar
  72. Soulsbury CD (2010) Genetic patterns of paternity and testes size in mammals. PLoS ONE 5(3):e9581CrossRefPubMedPubMedCentralGoogle Scholar
  73. Srivastava A, Morgan AP, Najarian ML, Sarsani VK, Sigmon JS, Shorter JR et al (2017) Genomes of the mouse collaborative cross. Genetics 206(2):537–556CrossRefPubMedPubMedCentralGoogle Scholar
  74. Storchova R, Gregorová S, Buckiova D, Kyselova V, Divina P, Forejt J (2004) Genetic analysis of X-linked hybrid sterility in the house mouse. Mamm Genome 15(7):515–524CrossRefPubMedGoogle Scholar
  75. Supp DM, Witte DP, Branford WW, Smith EP, Potter SS (1996) Sp4, a member of the Sp1-family of zinc finger transcription factors, is required for normal murine growth, viability, and male fertility. Dev Biol 176(2):284–299CrossRefPubMedGoogle Scholar
  76. Suto JI (2008) Genetic dissection of testis weight in a mouse strain having an extremely large testis: major testis weight determinants are autosomal rather than Y-linked on the basis of comprehensive analyses in Y-chromosome consomic strains. Proc Jpn Acad B 84(9):393–406CrossRefPubMedGoogle Scholar
  77. Suto JI (2011) Genetic dissection of testis weight in mice: quantitative trait locus analysis using F2 intercrosses between strains with extreme testis weight, and association study using Y-consomic strains. Mamm Genome 22(11–12):648–660CrossRefPubMedGoogle Scholar
  78. Svenson KL, Gatti DM, Valdar W, Welsh CE, Cheng R, Chesler EJ et al (2012) High-resolution genetic mapping using the Mouse Diversity outbred population. Genetics 190(2):437–447CrossRefPubMedPubMedCentralGoogle Scholar
  79. Trommsdorff M, Gotthardt M, Hiesberger T, Shelton J, Stockinger W, Nimpf J et al (1999) Reeler/Disabled-like disruption of neuronal migration in knockout mice lacking the VLDL receptor and ApoE receptor 2. Cell 97(6):689–701CrossRefPubMedGoogle Scholar
  80. Tyler AL, Ji B, Gatti DM, Munger SC, Churchill GA, Svenson KL, Carter GW (2017) Epistatic networks jointly influence phenotypes related to metabolic disease and gene expression in diversity outbred mice. Genetics 206(2):621–639CrossRefPubMedPubMedCentralGoogle Scholar
  81. Wang J, Williams RW, Manly KF (2003) WebQTL: web-based complex trait analysis. Neuroinformatics 1:299–308CrossRefPubMedGoogle Scholar
  82. Watanabe T, Chuma S, Yamamoto Y, Kuramochi-Miyagawa S, Totoki Y, Toyoda A et al (2011) MITOPLD is a mitochondrial protein essential for nuage formation and piRNA biogenesis in the mouse germline. Dev Cell 20(3):364–375CrossRefPubMedPubMedCentralGoogle Scholar
  83. Wellcome Trust Sanger Institute (2009) Alleles produced for the KOMP project by the Wellcome Trust Sanger Institute. MGI Direct Data SubmissionGoogle Scholar
  84. White MA, Steffy B, Wiltshire T, Payseur BA (2011) Genetic dissection of a key reproductive barrier between nascent species of house mice. Genetics 189(1):289–304CrossRefPubMedPubMedCentralGoogle Scholar
  85. White MA, Stubbings M, Dumont BL, Payseur BA (2012) Genetics and evolution of hybrid male sterility in house mice. Genetics 191(3):917–934CrossRefPubMedPubMedCentralGoogle Scholar
  86. Williams RW, Williams EG (2016) Resources for systems genetics. Methods Mol Biol 1488:3–29CrossRefGoogle Scholar
  87. Woods LC, Mott R (2017) Heterogeneous stock populations for analysis of complex traits. Methods Mol Biol 1488:31–44CrossRefPubMedGoogle Scholar
  88. Xu S, Xia W, Zohar Y, Gui JF (2013) Zebrafish dmrta2 regulates the expression of cdkn2c in spermatogenesis in the adult testis. Biol Reprod 88(1):14CrossRefPubMedGoogle Scholar
  89. Yang J, Zaitlen NA, Goddard ME, Visscher PM, Price AL (2014) Advantages and pitfalls in the application of mixed-model association methods. Nat Genet 46(2):100–106CrossRefPubMedPubMedCentralGoogle Scholar
  90. Yuan S, Stratton CJ, Bao J, Zheng H, Bhetwal BP, Yanagimachi R, Yan W (2015) Spata6 is required for normal assembly of the sperm connecting piece and tight head–tail conjunction. Proc Natl Acad Sci 112(5):E430–E439CrossRefPubMedGoogle Scholar
  91. Zhang T, Murphy MW, Gearhart MD, Bardwell VJ, Zarkower D (2014) The mammalian Doublesex homolog DMRT6 coordinates the transition between mitotic and meiotic developmental programs during spermatogenesis. Development 141(19):3662–3671CrossRefPubMedPubMedCentralGoogle Scholar
  92. Zhang H, Na W, Zhang HL, Wang N, Du ZQ, Wang SZ, Wang ZP, Zhang Z, Li H (2017) TCF21 is related to testis growth and development in broiler chickens. Genet Sel Evol 49(1):25CrossRefPubMedPubMedCentralGoogle Scholar
  93. Zheng G, Dahl JA, Niu Y, Fedorcsak P, Huang CM, Li CJ et al (2013) ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility. Mol Cell 49(1):18–29CrossRefPubMedGoogle Scholar
  94. Zidek V, Musilova A, Pintir J, Simakova M, Pravenec M (1998) Genetic dissection of testicular weight in the mouse with BXD recombinant inbred strains. Mamm Genome 9(7):503–505CrossRefPubMedGoogle Scholar
  95. Zindy F, den Besten W, Chen B, Rehg JE, Latres E, Barbacid M et al (2001) Control of spermatogenesis in mice by the cyclin D-dependent kinase inhibitors p18Ink4c and p19Ink4d. Mol Cell Biol 21(9):3244–3255CrossRefPubMedPubMedCentralGoogle Scholar
  96. Zuccarello D, Ferlin A, Cazzadore C, Pepe A, Garolla A, Moretti A, Cordeschi G, Francavilla S, Foresta C (2008) Mutations in dynein genes in patients affected by isolated non-syndromic asthenozoospermia. Hum Reprod 23(8):1957–1962CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Joshua T. Yuan
    • 1
  • Daniel M. Gatti
    • 2
  • Vivek M. Philip
    • 2
  • Steven Kasparek
    • 3
  • Andrew M. Kreuzman
    • 4
  • Benjamin Mansky
    • 4
  • Kayvon Sharif
    • 4
  • Dominik Taterra
    • 4
  • Walter M. Taylor
    • 4
  • Mary Thomas
    • 4
  • Jeremy O. Ward
    • 5
  • Andrew Holmes
    • 6
  • Elissa J. Chesler
    • 2
  • Clarissa C. Parker
    • 3
    • 4
  1. 1.Department of Computer Science, Program in Molecular Biology & BiochemistryMiddlebury CollegeMiddleburyUSA
  2. 2.The Jackson LaboratoryBar HarborUSA
  3. 3.Department of PsychologyMiddlebury CollegeMiddleburyUSA
  4. 4.Program in NeuroscienceMiddlebury CollegeMiddleburyUSA
  5. 5.Department of Biology, Program in Molecular Biology & BiochemistryMiddlebury CollegeMiddleburyUSA
  6. 6.Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcoholism and Alcohol Abuse (NIAAA)US National Institutes of Health (NIH)BethesdaUSA

Personalised recommendations