Mammalian Genome

, Volume 29, Issue 1–2, pp 80–89 | Cite as

Quantitative trait mapping in Diversity Outbred mice identifies two genomic regions associated with heart size

  • John R. ShorterEmail author
  • Wei Huang
  • Ju Youn Beak
  • Kunjie Hua
  • Daniel M. Gatti
  • Fernando Pardo-Manuel de Villena
  • Daniel Pomp
  • Brian C. JensenEmail author


Heart size is an important factor in cardiac health and disease. In particular, increased heart weight is predictive of adverse cardiovascular outcomes in multiple large community-based studies. We use two cohorts of Diversity Outbred (DO) mice to investigate the role of genetics, sex, age, and diet on heart size. DO mice (n = 289) of both sexes from generation 10 were fed a standard chow diet, and analyzed at 12–15 weeks of age. Another cohort of female DO mice (n = 258) from generation 11 were fed either a high-fat, cholesterol-containing (HFC) diet or a low-fat, high-protein diet, and analyzed at 24–25 weeks. We did not observe an effect of diet on body or heart weight in generation 11 mice, although we previously reported an effect on other cardiovascular risk factors, including cholesterol, triglycerides, and insulin. We do observe a significant genetic effect on heart weight in this population. We identified two quantitative trait loci for heart weight, one (Hwtf1) at a genome-wide significance level of p ≤ 0.05 on MMU15 and one (Hwtf2) at a genome-wide suggestive level of p ≤ 0.1 on MMU10, that together explain 13.3% of the phenotypic variance. Hwtf1 contained collagen type XXII alpha 1 chain (Col22a1), and the NZO/HlLtJ and WSB/EiJ haplotypes were associated with larger hearts. This is consistent with heart tissue Col22a1 expression in DO founders and SNP patterns within Hwtf1 for Col22a1. Col22a1 has been previously associated with cardiac fibrosis in mice, suggesting that Col22a1 may be involved in pathological cardiac hypertrophy.



This work was supported in part by NIH Grants DK076050 and DK087346 (DP) and the UAI Research Foundation (BCJ). Phenotypes were collected using the Animal Metabolism Phenotyping core facility within UNC’s Nutrition and Obesity Research Center funded by NIH DK056350. We also acknowledge George Weinstock and The Genome Institute (Washington University) for partial funding of the mouse purchase and husbandry costs for cohort 2 of the DO mice used in these studies. We thank Liyang Zhao and Kuo-Chen Jung for assistance with all mouse experiments, and Brian Bennett and Tangi Smallwood for assistance with the cohort 2 experiments. We thank Martin Ferris for analysis support. Charles Farber is gratefully acknowledged for performing the femur length phenotyping and providing those data for use in these studies.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

335_2017_9730_MOESM1_ESM.tif (17.3 mb)
Fig. S1 Mapping heart weight as a function of other characteristics. A) QTL mapping of 547 DO mice for heart weight without an adjustment for total body size. B) QTL mapping of 547 DO mice for heart weight as a function of total body weight. C) QTL mapping of 547 DO mice for heart weight as a function of femur length, which is represented in Figure 1. Horizontal lines represent significance threshold from permutation testing (dashed line at p value =0.05, dotted line at p value =0.1). (TIF 17716 KB)
335_2017_9730_MOESM2_ESM.tif (18.3 mb)
Fig. S2 Mapping heart weight as a function of femur length across each generation. A) QTL mapping of 289 male and female DO G10 mice for heart weight as a function of femur length. B) QTL mapping of 258 female DO G11 mice for heart weight as a function of femur length. C) QTL mapping of 547 DO mice across both generations for heart weight as a function of femur length, which is represented in Figure 1. (TIF 18693 KB)
335_2017_9730_MOESM3_ESM.tif (14.7 mb)
Fig. S3 Transcription expression patterns of QTL candidate genes. Blue circles represent male mice, pink circles represent female mice. A) Expression profiles of 4 candidate genes selected near the QTL peak identified on chromosome 10. B) Expression profiles of eight candidate genes selected near the QTL peak identified on chromosome 15. (TIF 15028 KB)
335_2017_9730_MOESM4_ESM.xlsx (42 kb)
Supplementary material 1 (XLSX 42 KB)
335_2017_9730_MOESM5_ESM.xlsx (56 kb)
Supplementary material 2 (XLSX 56 KB)
335_2017_9730_MOESM6_ESM.xlsx (88 kb)
Supplementary material 3 (XLSX 88 KB)


  1. Bikkina M, Levy D, Evans JC, Larson MG, Benjamin EJ, Wolf PA, Castelli WP (1994) Left ventricular mass and risk of stroke in an elderly cohort: the Framingham Heart Study. JAMA 272(1):33–36. CrossRefPubMedGoogle Scholar
  2. Broman KW (2014) Fourteen years of R/qtl: just barely sustainable. J Open Res Softw 2(1):e11CrossRefPubMedPubMedCentralGoogle Scholar
  3. Chesler EJ, Gatti DM, Morgan AP, Strobel M, Trepanier L, Oberbeck D et al (2016) Diversity outbred mice at 21: maintaining allelic variation in the face of selection. G3: Genes Genomes Genet 6(12):3893–3902CrossRefGoogle Scholar
  4. Churchill GA, Gatti DM, Munger SC, Svenson KL (2012) The diversity outbred mouse population. Mamm Genome 23(9–10):713–718CrossRefPubMedPubMedCentralGoogle Scholar
  5. Coffey AR, Smallwood TL, Albright J, Hua K, Kanke M, Pomp D et al (2017) Systems genetics identifies a co-regulated module of liver microRNAs associated with plasma LDL cholesterol in murine diet-induced dyslipidemia. Physiol Genomics 49(11):618–629. CrossRefPubMedPubMedCentralGoogle Scholar
  6. Cuspidi C, Rescaldani M, Sala C, Grassi G (2014) Left-ventricular hypertrophy and obesity: a systematic review and meta-analysis of echocardiographic studies. J Hypertens 32(1):16–25. CrossRefPubMedGoogle Scholar
  7. Deschepper CF, Boutin-Ganache I, Zahabi A, Jiang Z (2002) In search of cardiovascular candidate genes: interactions between phenotypes and genotypes. Hypertension 39:332–336CrossRefPubMedGoogle Scholar
  8. Dickson PE, Ndukum J, Wilcox T, Clark J, Roy B, Zhang L et al (2015) Association of novelty-related behaviors and intravenous cocaine self-administration in Diversity Outbred mice. Psychopharmacology 232(6):1011–1024CrossRefPubMedGoogle Scholar
  9. Fox ER, Musani SK, Barbalic M, Lin H, Yu B, Ogunyankin KO et al (2013) Genome-wide association study of cardiac structure and systolic function in African Americans: the Candidate Gene Association Resource (CARe) Study. Cardiovasc Genet 6(1):37–46CrossRefGoogle Scholar
  10. Gardin JM, McClelland R, Kitzman D et al (2001) M-mode echocardiographic disease predictors of six-to seven -year incidence of coronary heart disease, stroke, congestive heart failure, and mortality in an elderly cohort (the Cardiovascular Health Study). Am J Cardiol 87:1051–1057CrossRefPubMedGoogle Scholar
  11. Gatti DM, Svenson KL, Shabalin A, Wu LY, Valdar W, Simecek P et al (2014) Quantitative trait locus mapping methods for diversity outbred mice. G3: Genes Genomes Genet 4(9):1623–1633CrossRefGoogle Scholar
  12. Houser SR, Margulies KB, Murphy AM, Spinale FG, Francis GS et al (2012) Animal models of heart failure: a scientific statement from the American Heart Association. Circ Res 111:131–150. CrossRefPubMedGoogle Scholar
  13. Keane TM, Goodstadt L, Danecek P, White MA, Wong K et al (2012) Mouse genomic variation and its effect on phenotypes and gene regulation. Nature 477(7364):289–294CrossRefGoogle Scholar
  14. King EG, Long AD (2017) The Beavis effect in next-generation mapping panels in Drosophila melanogaster. G3: Genes Genomes Genet 7(6):1643–1652Google Scholar
  15. Koch M, Schulze J, Hansen U, Ashwodt T, Keene DR, Brunken WJ et al (2004) A novel marker of tissue junctions, collagen XXII. J Biol Chem 279(21):22514–22521CrossRefPubMedPubMedCentralGoogle Scholar
  16. Kolwicz SC, Purohit S, Tian R (2013) Cardiac metabolism and its interactions with contraction, growth, and survival of the cardiomyocte. Circ Res 113(5):603–616CrossRefPubMedGoogle Scholar
  17. Leamy LJ, Elo K, Nielsen MK, Van Vleck LD, Pomp D (2005) Genetic variance and covariance patterns for body weight and energy balance characters in an advanced intercross population of mice. Genet Sel Evol 37(3):151–173CrossRefPubMedPubMedCentralGoogle Scholar
  18. Levy D, Garrison RJ, Savage DD, Kannel WB, Castelli WP (1989) Left ventricular mass and incidence of coronary heart disease in an elderly cohort: the Framingham Heart Study. Ann Intern Med 110:101–107CrossRefPubMedGoogle Scholar
  19. Levy D, Garrison RJ, Savage DD et al (1990) Prognostic implications of echocardiographically determined left ventricular mass in the Framingham Heart Study. N Engl J Med 322:1561–1566CrossRefPubMedGoogle Scholar
  20. Li Q, Berndt A, Sundberg BA, Silva KA, Kennedy VE, Cario CL et al (2016) Mouse genome-wide association study identifies polymorphisms on chromosomes 4, 11 and 15 for age-related cardiac fibrosis. Mamm Genome 27(5–6):179–190CrossRefPubMedPubMedCentralGoogle Scholar
  21. Llamas B, Jiang Z, Rainville ML, Picard S, Deschepper CF (2005) Distinct QTLs are linked to cardiac left ventricular mass in a sex-specific manner in a normotensive inbred rat intercross. Mamm Genome 16:700–712CrossRefPubMedGoogle Scholar
  22. Llamas B, Bélanger S, Picard S, Deschepper CF (2007) Cardiac mass and cardiomyocyte size are governed by different genetic loci on either autosomes or chromosome Y in recombinant inbred mice. Physiol Genomics 31:176–182. CrossRefPubMedGoogle Scholar
  23. Logan RW, Robledo RF, Recla JM, Philip VM, Bubier JA, Jay JJ et al (2013) High-precision genetic mapping of behavioral traits in the diversity outbred mouse population. Genes Brain Behav 12(4):424–437CrossRefPubMedPubMedCentralGoogle Scholar
  24. Morgan AP, Fu CP, Kao CY, Welsh CE, Didion JP, Yadgary L et al (2016) The Mouse universal genotyping array: from substrains to subspecies. G3: Genes Genomes Genet 6(2):263–279CrossRefGoogle Scholar
  25. Neeland IJ, Gupta S, Ayers CR, Turer AT, Rame EJ, Das SR et al (2013) Relation of regional fat distribution to left ventricular structure and function. Circ Cardiovasc Imaging 6(5):800–807CrossRefPubMedPubMedCentralGoogle Scholar
  26. Philip VM, Sokoloff G, Ackert-Bicknell CL, Striz M, Branstetter L, Beckmann MA et al (2011) Genetic analysis in the collaborative cross breeding population. Genome Res 21(8):1223–1238CrossRefPubMedPubMedCentralGoogle Scholar
  27. Rau CD, Wang J, Avetisyan R, Romay M, Martin L, Ren S et al (2015) Mapping genetic contributions to cardiac pathology induced by Beta-adrenergic stimulation in mice. Circ Cardiovasc Genet 8(1):40–49CrossRefPubMedGoogle Scholar
  28. Recla JM, Robledo RF, Gatti DM, Bult CJ, Churchill GA, Chesler EJ (2014) Precise genetic mapping and integrative bioinformatics in Diversity Outbred mice reveals Hydin as a novel pain gene. Mamm Genome 25(5–6):211–222CrossRefPubMedPubMedCentralGoogle Scholar
  29. Rocha JL, Eisen EJ, Van Vleck LD, Pomp D (2004) A large-sample QTL study in mice: II. Body composition. Mamm Genome 15:100–113CrossRefPubMedGoogle Scholar
  30. Sen S, Churchill GA (2001) A statistical framework for quantitative trait mapping. Genetics 159(1):371–387PubMedPubMedCentralGoogle Scholar
  31. Shah S, Nelson CP, Gaunt TR, van der Harst P, Barnes T, Braund PS et al (2011) Four genetic loci influencing electrocardiographic indices of left ventricular hypertrophy. Circ Cardiovasc Genet 4(6):626–635CrossRefPubMedPubMedCentralGoogle Scholar
  32. Shimizu I, Minamino T (2016) Physiological and pathological cardiac hypertrophy. J Mol Cell Cardiol 97:245–262CrossRefPubMedGoogle Scholar
  33. Shorter JR, Odet F, Aylor DL, Pan W, Kao CY et al (2017) Male infertility is responsible for nearly half of the extinction observed in the collaborative cross. Genetics 206:557–572CrossRefPubMedPubMedCentralGoogle Scholar
  34. Smallwood TL, Gatti DM, Quizon P, Weinstock GM, Jung KC, Zhao L et al (2014) High-resolution genetic mapping in the diversity outbred mouse population identifies Apobec1 as a candidate gene for atherosclerosis. G3: Genes Genomes Genet 4(12):2353–2363CrossRefGoogle Scholar
  35. Srivastava A, Morgan AP, Najarian M, Sarsani VK, Sigmon JS et al (2017) The genomes of the collaborative cross. Genetics 206:537–556CrossRefPubMedPubMedCentralGoogle Scholar
  36. Sugiyama F, Churchill GA, Li R, Libby LJ, Carver T, Yagami K, John SW, Paigen B (2002) QTL associated with blood pressure, heart rate, and heart weight in CBA/CaJ and BALB/cJ mice. Physiol Genomics 10:5–12CrossRefPubMedGoogle Scholar
  37. Svenson KL, Gatti DM, Valdar W, Welsh CE, Cheng R, Chesler EJ et al (2012) High-resolution genetic mapping using the mouse diversity outbred population. Genetics 190(2):437–447CrossRefPubMedPubMedCentralGoogle Scholar
  38. Sweeney G (2010) Cardiovascular effects of leptin. Nat Rev Cardiol 7:22–29CrossRefPubMedGoogle Scholar
  39. Travers JG, Kamal FA, Robbins J, Yutzey KE, Blaxall BC (2016) Cardiac fibrosis: the fibroblast awakens. Circ Res 118(6):1021–1040CrossRefPubMedPubMedCentralGoogle Scholar
  40. Tsujita Y, Iwai N, Tamaki S, Nakamura Y, Nishimura M, Kinoshita M (2000) Genetic mapping of quantitative trait loci influencing left ventricular mass in rats. Am J Physiol Heart Circ Physiol 279:H2062–H2067CrossRefPubMedGoogle Scholar
  41. Tyler AL, Ji B, Gatti DM, Munger SC, Churchill GA, Svenson KL, Carter GW (2017) Epistatic networks jointly influence phenotypes related to metabolic disease and gene expression in diversity outbred mice. Genetics 206(2):621–639CrossRefPubMedPubMedCentralGoogle Scholar
  42. Van Vliet P, Wu SM, Zaffran S, Pucéat M (2012) Early cardiac development: a view from stem cells to embryos. Cardiovasc Res 96(3):352–362CrossRefPubMedPubMedCentralGoogle Scholar
  43. Vasan RS, Glazer NL, Felix JF, Lieb W, Wild PS, Felix SB et al (2009) Genetic variants associated with cardiac structure and function: a meta-analysis and replication of genome-wide association data. JAMA 302(2):168–178CrossRefPubMedPubMedCentralGoogle Scholar
  44. Welsh CE, Miller DR, Manly KF, Wang J, McMillan L et al (2012) Status and access to the collaborative cross population. Mamm Genome 23:706–712CrossRefPubMedPubMedCentralGoogle Scholar
  45. Wild PS, Felix JF, Schillert A, Teumer A, Chen MH, Leening MJG et al (2017) Large-scale genome-wide analysis identifies genetic variants associated with cardiac structure and function. J Clin Invest 127(5):1798–1812CrossRefPubMedPubMedCentralGoogle Scholar
  46. Winter JM, Gildea DE, Andreas JP, Gatti DM, Williams KA, Lee M, Hu Y et al (2016) Mapping complex traits in a diversity outbred F1 mouse population identifies germline modifiers of metastasis in human prostate cancer. Cell Syst 4:31.e6–45.e6Google Scholar
  47. Woodiwiss AJ, Libhaber CD, Majane OH, Libhaber E, Maseko M, Norton GR (2008) Obesity promotes left ventricular concentric rather than eccentric geometric remodeling and hypertrophy independent of blood pressure. Am J Hypertens 21:1144–1151CrossRefPubMedGoogle Scholar
  48. Yang J, Zaitlen NA, Goddard ME, Visscher PM, Price AL (2014) Advantages and pitfalls in the application of mixed-model association methods. Nat Genet 46:100–106CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  • John R. Shorter
    • 1
    Email author
  • Wei Huang
    • 6
  • Ju Youn Beak
    • 6
  • Kunjie Hua
    • 1
  • Daniel M. Gatti
    • 4
  • Fernando Pardo-Manuel de Villena
    • 1
    • 2
  • Daniel Pomp
    • 1
  • Brian C. Jensen
    • 3
    • 5
    • 6
    Email author
  1. 1.Department of GeneticsUniversity of North CarolinaChapel HillUSA
  2. 2.Lineberger Comprehensive Cancer CenterUniversity of North CarolinaChapel HillUSA
  3. 3.Division of Cardiology, Department of MedicineUniversity of North CarolinaChapel HillUSA
  4. 4.The Jackson LaboratoryBar HarborUSA
  5. 5.Department of PharmacologyUniversity of North CarolinaChapel HillUSA
  6. 6.McAllister Heart InstituteUniversity of North CarolinaChapel HillUSA

Personalised recommendations