Mammalian Genome

, Volume 29, Issue 1–2, pp 5–23 | Cite as

The road less traveled: from genotype to phenotype in flies and humans

  • Robert R. H. Anholt
  • Trudy F. C. Mackay


Understanding how genomic variation gives rise to phenotypic variation is essential for elucidating mechanisms of adaptive evolution, plant and animal breeding, and precision medicine. However, identifying causal links between DNA sequence variants and variation in phenotypes is challenging in human populations, due to large blocks of linkage disequilibrium in the genome and heterogeneous developmental histories, lifestyles, and social and physical environments. Drosophila melanogaster presents a powerful genetic model, since linkage disequilibrium decays rapidly, facilitating assignment of causality to polymorphisms associated with phenotypic variation, and large numbers of individuals can be reared under defined environmental conditions, economically, and without regulatory restrictions. The D. melanogaster Genetic Reference Panel (DGRP), a population of 205 sequenced, inbred wild-derived flies, has enabled genome-wide association studies of morphological, physiological, behavioral, and life history traits, and demonstrated that genetic architectures of complex traits are highly polygenic, sexually dimorphic, and context dependent with extensive sex-, environment-, and genetic background (epistatic) effects. These features together with a modular organization of the transcriptome illustrate a dynamic integrative genetic architecture for complex traits. The complexity of the genetic architectures for complex traits in Drosophila provides important caveats for the interpretation of genetic studies in human populations. Aspects of the genetic underpinnings of complex traits can be represented as simplified gene networks on which human orthologues can be superimposed to provide blueprints for subsequent studies on analogous traits in human populations. Fundamental principles of the genetic architectures of Drosophila complex traits are likely applicable across phyla, from the DGRP to human populations.



Work in the authors’ laboratories is supported by NIH Grants GM059469, AA016560, GM076083, and AG043490.

Compliance with ethical standards

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.


  1. Akhund-Zade J, Bergland AO, Crowe SO, Unckless RL (2017) The genetic basis of natural variation in Drosophila (Diptera: Drosophilidae) virgin egg retention. J Insect Sci 17:pii 5CrossRefGoogle Scholar
  2. Akins JM, Schroeder JA, Brower DL, Aposhian HV (1992) Evaluation of Drosophila melanogaster as an alternative animal for studying the neurotoxicity of heavy metals. Biometals 5:111–120PubMedCrossRefGoogle Scholar
  3. Alattia JR, Kuraishi T, Dimitrov M, Chang I, Lemaitre B, Fraering PC (2011) Mercury is a direct and potent γ-secretase inhibitor affecting Notch processing and development in Drosophila. FASEB J 25:2287–2295PubMedCrossRefGoogle Scholar
  4. Anholt RRH, Dilda CL, Chang S, Fanara JJ, Kulkarni NH, Ganguly I, Rollmann SM, Kamdar KP, Mackay TFC (2003) The genetic architecture of odor-guided behavior in Drosophila: epistasis and the transcriptome. Nat Genet 35:180–184PubMedCrossRefGoogle Scholar
  5. Appel M, Scholz CJ, Müller T, Dittrich M, König C, Bockstaller M, Oguz T, Khalili A, Antwi-Adjei E, Schauer T, Margulies C, Tanimoto H, Yarali A (2015) Genome-wide association analyses point to candidate genes for electric shock avoidance in Drosophila melanogaster. PLoS ONE 10:e0126986PubMedPubMedCentralCrossRefGoogle Scholar
  6. Arya GH, Weber AL, Wang P, Magwire MM, Serrano Negron YL, Mackay TFC, Anholt RRH (2010) Natural variation, functional pleiotropy and transcriptional networks of Odorant binding protein genes in Drosophila melanogaster. Genetics 186:1475–1485PubMedPubMedCentralCrossRefGoogle Scholar
  7. Arya GH, Magwire MM, Huang W, Serrano-Negron YL, Mackay TFC, Anholt RRH (2015) The genetic basis for variation in olfactory behavior in Drosophila melanogaster. Chem Senses 40:233–243PubMedPubMedCentralCrossRefGoogle Scholar
  8. Ayroles JF, Carbone MA, Stone EA, Jordan KW, Lyman RF, Magwire MM, Rollmann SM, Duncan LH, Lawrence F, Anholt RRH, Mackay TFC (2009) Systems genetics of complex traits in Drosophila melanogaster. Nat Genet 41:299–307PubMedPubMedCentralCrossRefGoogle Scholar
  9. Ayroles JF, Buchanan SM, O’Leary C, Skutt-Kakaria K, Grenier JK, Clark AG, Hartl DL, de Bivort BL (2015) Behavioral idiosyncrasy reveals genetic control of phenotypic variability. Proc Natl Acad Sci USA 112:6706–6711PubMedPubMedCentralCrossRefGoogle Scholar
  10. Bassett AR, Liu JL (2014) CRISPR/Cas9 and genome editing in Drosophila. J Genet Genomics 41:7–19PubMedCrossRefGoogle Scholar
  11. Battlay P, Schmidt JM, Fournier-Level A, Robin C (2016) Genomic and transcriptomic associations identify a new insecticide resistance phenotype for the selective sweep at the Cyp6g1 locus of Drosophila melanogaster. G3 6:2573–2581PubMedPubMedCentralCrossRefGoogle Scholar
  12. Bellen HJ, Levis RW, He Y, Carlson JW, Evans-Holm M, Bae E, Kim J, Metaxakis A, Savakis C, Schulze KL, Hoskins RA, Spradling AC (2011) The Drosophila gene disruption project: progress using transposons with distinctive site specificities. Genetics 188:731–743PubMedPubMedCentralCrossRefGoogle Scholar
  13. Bland C, Rand MD (2006) Methylmercury induces activation of Notch signaling. Neurotoxicology 27:982–991PubMedCrossRefGoogle Scholar
  14. Bomba L, Walter K, Soranzo N (2017) The impact of rare and low-frequency genetic variants in common disease. Genome Biol 18:77PubMedPubMedCentralCrossRefGoogle Scholar
  15. Bønnelykke K, Ober C (2016) Leveraging gene-environment interactions and endotypes for asthma gene discovery. J Allergy Clin Immunol 137:667–679PubMedPubMedCentralCrossRefGoogle Scholar
  16. Bou Sleiman MS, Osman D, Massouras A, Hoffmann AA, Lemaitre B, Deplancke B (2015) Genetic, molecular and physiological basis of variation in Drosophila gut immunocompetence. Nat Commun 6:7829PubMedPubMedCentralCrossRefGoogle Scholar
  17. Boyle EA, Li YI, Pritchard JK (2017) An expanded view of complex traits: from polygenic to omnigenic. Cell 169:1177–1186PubMedCrossRefGoogle Scholar
  18. Brown EB, Layne JE, Zhu C, Jegga AG, Rollmann SM (2013) Genome-wide association mapping of natural variation in odour-guided behaviour in Drosophila. Genes Brain Behav 12:503–515PubMedCrossRefGoogle Scholar
  19. Bushnell PJ, Ward WO, Morozova TV, Oshiro WM, Lin MT, Judson RS, Hester SD, McKee JM, Higuchi M (2017) Editor’s highlight: genetic targets of acute toluene inhalation in Drosophila melanogaster. Toxicol Sci 156:230–239PubMedGoogle Scholar
  20. Canfield RL, Henderson CR Jr, Cory-Slechta DA, Cox C, Jusko TA, Lanphear BP (2003) Intellectual impairment in children with blood lead concentrations below 10 microg per deciliter. N Engl J Med 348:1517–1526PubMedPubMedCentralCrossRefGoogle Scholar
  21. Carbone MA, Jordan KW, Lyman RF, Harbison ST, Leips J, Morgan TJ, DeLuca M, Awadalla P, Mackay TFC (2006) Phenotypic variation and natural selection at catsup, a pleiotropic quantitative trait gene in Drosophila. Curr Biol 16:912–919PubMedCrossRefGoogle Scholar
  22. Carbone MA, Yamamoto A, Huang W, Lyman RA, Meadors TB, Yamamoto R, Anholt RRH, Mackay TFC (2016) Genetic architecture of natural variation in visual senescence in Drosophila. Proc Natl Acad Sci USA 113:E6620-E6629PubMedPubMedCentralCrossRefGoogle Scholar
  23. CARDIoGRAMplusC4D Consortium, Deloukas P, Kanoni S, Willenborg C, Farrall M, Assimes TL, Thompson JR, Ingelsson E, Saleheen D, Erdmann J, Goldstein BA, Stirrups K, König IR, Cazier JB, Johansson A, Hall AS, Lee JY, Willer CJ, Chambers JC, Esko T, Folkersen L, Goel A, Grundberg E, Havulinna AS, Ho WK, Hopewell JC, Eriksson N, Kleber ME, Kristiansson K, Lundmark P, Lyytikäinen LP, Rafelt S, Shungin D, Strawbridge RJ, Thorleifsson G, Tikkanen E, Van Zuydam N, Voight BF, Waite LL, Zhang W, Ziegler A, Absher D, Altshuler D, Balmforth AJ, Barroso I, Braund PS, Burgdorf C, Claudi-Boehm S, Cox D, Dimitriou M, Do R, DIAGRAM Consortium, CARDIOGENICS Consortium, Doney AS, El Mokhtari N, Eriksson P, Fischer K, Fontanillas P, Franco-Cereceda A, Gigante B, Groop L, Gustafsson S, Hager J, Hallmans G, Han BG, Hunt SE, Kang HM, Illig T, Kessler T, Knowles JW, Kolovou G, Kuusisto J, Langenberg C, Langford C, Leander K, Lokki ML, Lundmark A, McCarthy MI, Meisinger C, Melander O, Mihailov E, Maouche S, Morris AD, Müller-Nurasyid M, MuTHER Consortium, Nikus K, Peden JF, Rayner NW, Rasheed A, Rosinger S, Rubin D, Rumpf MP, Schäfer A, Sivananthan M, Song C, Stewart AF, Tan ST, Thorgeirsson G, van der Schoot CE, Wagner PJ, Wellcome Trust Case Control Consortium, Wells GA, Wild PS, Yang TP, Amouyel P, Arveiler D, Basart H, Boehnke M, Boerwinkle E, Brambilla P, Cambien F, Cupples AL, de Faire U, Dehghan A, Diemert P, Epstein SE, Evans A, Ferrario MM, Ferrières J, Gauguier D, Go AS, Goodall AH, Gudnason V, Hazen SL, Holm H, Iribarren C, Jang Y, Kähönen M, Kee F, Kim HS, Klopp N, Koenig W, Kratzer W, Kuulasmaa K, Laakso M, Laaksonen R, Lee JY, Lind L, Ouwehand WH, Parish S, Park JE, Pedersen NL, Peters A, Quertermous T, Rader DJ, Salomaa V, Schadt E, Shah SH, Sinisalo J, Stark K, Stefansson K, Trégouët DA, Virtamo J, Wallentin L, Wareham N, Zimmermann ME, Nieminen MS, Hengstenberg C, Sandhu MS, Pastinen T, Syvänen AC, Hovingh GK, Dedoussis G, Franks PW, Lehtimäki T, Metspalu A, Zalloua PA, Siegbahn A, Schreiber S, Ripatti S, Blankenberg SS, Perola M, Clarke R, Boehm BO, O’Donnell C, Reilly MP, März W, Collins R, Kathiresan S, Hamsten A, Kooner JS, Thorsteinsdottir U, Danesh J, Palmer CN, Roberts R, Watkins H, Schunkert H, Samani NJ (2013) Large-scale association analysis identifies new risk loci for coronary artery disease. Nat Genet 45:25–33CrossRefGoogle Scholar
  24. Caspi A, McClay J, Moffitt TE, Mill J, Martin J, Craig IW, Taylor A, Poulton R (2002) Role of genotype in the cycle of violence in maltreated children. Science 297:851–854PubMedCrossRefGoogle Scholar
  25. Caspi A, Sugden K, Moffitt TE, Taylor A, Craig IW, Harrington H, McClay J, Mill J, Martin J, Braithwaite A, Poulton R (2003) Influence of life stress on depression: moderation by a polymorphism in the 5-HTT gene. Science 301:386–389PubMedCrossRefGoogle Scholar
  26. Cassar M, Issa AR, Riemensperger T, Petitgas C, Rival T, Coulom H, Iché-Torres M, Han KA, Birman S (2015) A dopamine receptor contributes to paraquat-induced neurotoxicity in Drosophila. Hum Mol Genet 24:197–212PubMedCrossRefGoogle Scholar
  27. Chahrour M, O’Roak BJ, Santini E, Samaco RC, Kleiman RJ, Manzini MC (2016) Current perspectives in autism spectrum disorder: from genes to therapy. J Neurosci 36:11402–11410PubMedPubMedCentralCrossRefGoogle Scholar
  28. Chaston JM, Dobson AJ, Newell PD, Douglas AE (2016) Host genetic control of the microbiota mediates the Drosophila nutritional phenotype. Appl Environ Microbiol 82:671–679PubMedCentralCrossRefGoogle Scholar
  29. Chow CY, Wolfner MF, Clark AG (2013a) Using natural variation in Drosophila to discover previously unknown endoplasmic reticulum stress genes. Proc Natl Acad Sci USA 110:9013–9018PubMedPubMedCentralCrossRefGoogle Scholar
  30. Chow CY, Wolfner MF, Clark AG (2013b) Large neurological component to genetic differences underlying biased sperm use in Drosophila. Genetics 193:177–185PubMedPubMedCentralCrossRefGoogle Scholar
  31. Chow CY, Kelsey KJ, Wolfner MF, Clark AG (2016) Candidate genetic modifiers of retinitis pigmentosa identified by exploiting natural variation in Drosophila. Hum Mol Genet 25:651–659PubMedCrossRefGoogle Scholar
  32. Corbett-Detig RB, Zhou J, Clark AG, Hartl DL, Ayroles JF (2013) Genetic incompatibilities are widespread within species. Nature 504:135–137PubMedPubMedCentralCrossRefGoogle Scholar
  33. Dardiotis E, Xiromerisiou G, Hadjichristodoulou C, Tsatsakis AM, Wilks MF, Hadjigeorgiou GM (2013) The interplay between environmental and genetic factors in Parkinson’s disease susceptibility: the evidence for pesticides. Toxicology 307:17–23PubMedCrossRefGoogle Scholar
  34. Dembeck LM, Böröczky K, Huang W, Schal C, Anholt RRH, Mackay TFC (2015a) Genetic architecture of natural variation in cuticular hydrocarbon composition in Drosophila melanogaster. eLife 4:e09861PubMedPubMedCentralCrossRefGoogle Scholar
  35. Dembeck LM, Huang W, Magwire MM, Lawrence F, Lyman RF, Mackay TFC (2015b) Genetic architecture of abdominal pigmentation in Drosophila melanogaster. PLoS Genet 11:e1005163PubMedPubMedCentralCrossRefGoogle Scholar
  36. Dilda CL, Mackay TFC (2002) The genetic architecture of Drosophila sensory bristle number. Genetics 162:1655–1674PubMedPubMedCentralGoogle Scholar
  37. Dobson AJ, Chaston JM, Newell PD, Donahue L, Hermann SL, Sannino DR, Westmiller S, Wong AC, Clark AG, Lazzaro BP, Douglas AE (2015) Host genetic determinants of microbiota-dependent nutrition revealed by genome-wide analysis of Drosophila melanogaster. Nat Commun 6:6312PubMedPubMedCentralCrossRefGoogle Scholar
  38. Durham MF, Magwire MM, Stone EA, Leips J (2014) Genome-wide analysis in Drosophila reveals age-specific effects of SNPs on fitness traits. Nat Commun 5:1–8CrossRefGoogle Scholar
  39. Ehrenreich IM, Torabi N, Jia Y, Kent J, Martis S, Shapiro JA, Gresham D, Caudy AA, Kruglyak L (2010) Dissection of genetically complex traits with extremely large pools of yeast segregants. Nature 464:1039–1042PubMedPubMedCentralCrossRefGoogle Scholar
  40. Engel GL, Delwig A, Rand MD (2012) The effects of methylmercury on Notch signaling during embryonic neural development in Drosophila melanogaster. Toxicol In Vitro 26:485–492PubMedCrossRefGoogle Scholar
  41. Falconer DS, Mackay TFC (1996) Introduction to quantitative genetics, 4th edn. Longman, Burnt MillGoogle Scholar
  42. Gaertner BE, Ruedi EA, McCoy LJ, Moore JM, Wolfner MF, Mackay TFC (2015) Heritable variation in courtship patterns in Drosophila melanogaster. G3 5:531–539PubMedPubMedCentralCrossRefGoogle Scholar
  43. Garlapow ME, Huang W, Yarboro MT, Peterson KR, Mackay TFC (2015) Quantitative genetics of food intake in Drosophila melanogaster. PLoS ONE 10:e0138129PubMedPubMedCentralCrossRefGoogle Scholar
  44. Garlapow ME, Everett LJ, Zhou S, Gearhart AW, Fay KA, Huang W, Morozova TV, Arya GH, Turlapati L, St Armour G, Hussain YN, McAdams SE, Fochler S, Mackay TFC (2017) Genetic and genomic response to selection for food consumption in Drosophila melanogaster. Behav Genet 47:227–243Google Scholar
  45. Gaulton KJ, Ferreira T, Lee Y, Raimondo A, Mägi R, Reschen ME, Mahajan A, Locke A, Rayner NW, Robertson N, Scott RA, Prokopenko I, Scott LJ, Green T, Sparso T, Thuillier D, Yengo L, Grallert H, Wahl S, Frånberg M, Strawbridge RJ, Kestler H, Chheda H, Eisele L, Gustafsson S, Steinthorsdottir V, Thorleifsson G, Qi L, Karssen LC, van Leeuwen EM, Willems SM, Li M, Chen H, Fuchsberger C, Kwan P, Ma C, Linderman M, Lu Y, Thomsen SK, Rundle JK, Beer NL, van de Bunt M, Chalisey A, Kang HM, Voight BF, Abecasis GR, Almgren P, Baldassarre D, Balkau B, Benediktsson R, Blüher M, Boeing H, Bonnycastle LL, Bottinger EP, Burtt NP, Carey J, Charpentier G, Chines PS, Cornelis MC, Couper DJ, Crenshaw AT, van Dam RM, Doney AS, Dorkhan M, Edkins S, Eriksson JG, Esko T, Eury E, Fadista J, Flannick J, Fontanillas P, Fox C, Franks PW, Gertow K, Gieger C, Gigante B, Gottesman O, Grant GB, Grarup N, Groves CJ, Hassinen M, Have CT, Herder C, Holmen OL, Hreidarsson AB, Humphries SE, Hunter DJ, Jackson AU, Jonsson A, Jørgensen ME, Jørgensen T, Kao WH, Kerrison ND, Kinnunen L, Klopp N, Kong A, Kovacs P, Kraft P, Kravic J, Langford C, Leander K, Liang L, Lichtner P, Lindgren CM, Lindholm E, Linneberg A, Liu CT, Lobbens S, Luan J, Lyssenko V, Männistö S, McLeod O, Meyer J, Mihailov E, Mirza G, Mühleisen TW, Müller-Nurasyid M, Navarro C, Nöthen MM, Oskolkov NN, Owen KR, Palli D, Pechlivanis S, Peltonen L, Perry JR, Platou CG, Roden M, Ruderfer D, Rybin D, van der Schouw YT, Sennblad B, Sigurðsson G, Stančáková A, Steinbach G, Storm P, Strauch K, Stringham HM, Sun Q, Thorand B, Tikkanen E, Tonjes A, Trakalo J, Tremoli E, Tuomi T, Wennauer R, Wiltshire S, Wood AR, Zeggini E, Dunham I, Birney E, Pasquali L, Ferrer J, Loos RJ, Dupuis J, Florez JC, Boerwinkle E, Pankow JS, van Duijn C, Sijbrands E, Meigs JB, Hu FB, Thorsteinsdottir U, Stefansson K, Lakka TA, Rauramaa R, Stumvoll M, Pedersen NL, Lind L, Keinanen-Kiukaanniemi SM, Korpi-Hyövälti E, Saaristo TE, Saltevo J, Kuusisto J, Laakso M, Metspalu A, Erbel R, Jöcke KH, Moebus S, Ripatti S, Salomaa V, Ingelsson E, Boehm BO, Bergman RN, Collins FS, Mohlke KL, Koistinen H, Tuomilehto J, Hveem K, Njølstad I, Deloukas P, Donnelly PJ, Frayling TM, Hattersley AT, de Faire U, Hamsten A, Illig T, Peters A, Cauchi S, Sladek R, Froguel P, Hansen T, Pedersen O, Morris AD, Palmer CN, Kathiresan S, Melander O, Nilsson PM, Groop LC, Barroso I, Langenberg C, Wareham NJ, Gloyn AL, Altshuler D, Boehnke M, Teslovich TM, McCarthy MI, Morris AP, DIAbetes Genetics Replication And Meta-analysis (DIAGRAM) Consortium (2015) Genetic fine mapping and genomic annotation defines causal mechanisms at type 2 diabetes susceptibility loci. Nat Genet 47:1415–1425PubMedPubMedCentralCrossRefGoogle Scholar
  46. Gill HJ, Nida DL, Dean DA, England MW, Jacobson KB (1989) Resistance of Drosophila to cadmium: biochemical factors in resistant and sensitive strains. Toxicology 56:315–321PubMedCrossRefGoogle Scholar
  47. Golden LC, Voskuhl R (2017) The importance of studying sex differences in disease: the example of multiple sclerosis. J Neurosci Res 95:633–643PubMedPubMedCentralCrossRefGoogle Scholar
  48. Greene CS, White BC, Moore JH (2009) Sensible initialization using expert knowledge for genome-wide analysis of epistasis using genetic programming. Genet Evol Comput Conf 2009:1289–1296Google Scholar
  49. Griffing B (1956) Concept of general and specific combining ability in relation to diallel crossing systems. Aust J Biol Sci 9:463–493CrossRefGoogle Scholar
  50. Grubbs N, Leach M, Su X, Petrisko T, Rosario JB, Mahaffey JW (2013) New components of Drosophila leg development identified through genome wide association studies. PLoS ONE 8:e60261PubMedPubMedCentralCrossRefGoogle Scholar
  51. Harbison ST, McCoy LJ, Mackay TFC (2013) Genome-wide association study of sleep in Drosophila melanogaster. BMC Genomics 14:281PubMedPubMedCentralCrossRefGoogle Scholar
  52. He X, Zhou S, St Armour GE, Mackay TFC, Anholt RRH (2016) Epistatic partners of neurogenic genes modulate Drosophila olfactory behavior. Genes Brain Behav 15:280–290PubMedPubMedCentralCrossRefGoogle Scholar
  53. Hirsch HV, Mercer J, Sambaziotis H, Huber M, Stark DT, Torno-Morley T, Hollocher K, Ghiradella H, Ruden DM (2003) Behavioral effects of chronic exposure to low levels of lead in Drosophila melanogaster. Neurotoxicology 24:435–442PubMedCrossRefGoogle Scholar
  54. Hirsch HV, Lnenicka G, Possidente D, Possidente B, Garfinkel MD, Wang L, Lu X, Ruden DM (2012) Drosophila melanogaster as a model for lead neurotoxicology and toxicogenomics research. Front Genet 3:68PubMedPubMedCentralCrossRefGoogle Scholar
  55. Horváth B, Betancourt AJ, Kalinka AT (2016) A novel method for quantifying the rate of embryogenesis uncovers considerable genetic variation for the duration of embryonic development in Drosophila melanogaster. BMC Evol Biol 16:200PubMedPubMedCentralCrossRefGoogle Scholar
  56. Howick VM, Lazzaro BP (2017) The genetic architecture of defence as resistance to and tolerance of bacterial infection in Drosophila melanogaster. Mol Ecol 26:1533–1546PubMedCrossRefGoogle Scholar
  57. Huang W, Richards S, Carbone MA, Zhu D, Anholt RRH, Ayroles JF, Duncan L, Jordan KW, Lawrence F, Magwire MM, Warner CB, Blankenburg K, Han Y, Javaid M, Jayaseelan J, Jhangiani SN, Muzny D, Ongeri F, Perales L, Wu YQ, Zhang Y, Zou X, Stone EA, Gibbs RA, Mackay TFC (2012) Epistasis dominates the genetic architecture of Drosophila quantitative traits. Proc Natl Acad Sci USA 109:15553–15559PubMedPubMedCentralCrossRefGoogle Scholar
  58. Huang W, Massouras A, Inoue Y, Peiffer J, Ràmia M, Tarone AM, Turlapati L, Zichner T, Zhu D, Lyman RF, Magwire MM, Blankenburg K, Carbone MA, Chang K, Ellis LL, Fernandez S, Han Y, Highnam G, Hjelmen CE, Jack JR, Javaid M, Jayaseelan J, Kalra D, Lee S, Lewis L, Munidasa M, Ongeri F, Patel S, Perales L, Perez A, Pu L, Rollmann SM, Ruth R, Saada N, Warner C, Williams A, Wu YQ, Yamamoto A, Zhang Y, Zhu Y, Anholt RRH, Korbel JO, Mittelman D, Muzny DM, Gibbs RA, Barbadilla A, Johnston JS, Stone EA, Richards S, Deplancke B, Mackay TFC (2014) Natural variation in genome architecture among 205 Drosophila melanogaster Genetic Reference Panel lines. Genome Res 24:1193–1208PubMedPubMedCentralCrossRefGoogle Scholar
  59. Huang W, Carbone MA, Magwire MM, Peiffer JA, Lyman RF, Stone EA, Anholt RRH, Mackay TFC (2015) Genetic basis of transcriptome diversity in Drosophila melanogaster. Proc Natl Acad Sci USA 112:E6010-E6019PubMedCentralGoogle Scholar
  60. Hunter CM, Huang W, Mackay TFC, Singh ND (2016) The genetic architecture of natural variation in recombination rate in Drosophila melanogaster. PLoS Genet 12:e1005951PubMedPubMedCentralCrossRefGoogle Scholar
  61. Isani G, Carpene E (2014) Metallothioneins, unconventional proteins from unconventional animals: a long journey from nematodes to mammals. Biomolecules 4:435–457PubMedPubMedCentralCrossRefGoogle Scholar
  62. Ivanov DK, Escott-Price V, Ziehm M, Magwire MM, Mackay TFC, Partridge L, Thornton JM (2015) Longevity GWAS using the Drosophila Genetic Reference Panel. J Gerontol Ser A Biol Sci Med Sci 70:1470–1478CrossRefGoogle Scholar
  63. Jakubowski M (2011) Low-level environmental lead exposure and intellectual impairment in children–the current concepts of risk assessment. Int J Occup Med Environ Health 24:1–7PubMedCrossRefGoogle Scholar
  64. Jordan KW, Craver KL, Magwire MM, Cubilla CE, Mackay TFC, Anholt RRH (2012) Genome-wide association for sensitivity to chronic oxidative stress in Drosophila melanogaster. PLoS ONE 7:e38722PubMedPubMedCentralCrossRefGoogle Scholar
  65. Jumbo-Lucioni P, Bu S, Harbison ST, Slaughter JC, Mackay TFC, Moellering DR, De Luca M (2012) Nuclear genomic control of naturally occurring variation in mitochondrial function in Drosophila melanogaster. BMC Genomics 13:659PubMedPubMedCentralCrossRefGoogle Scholar
  66. Katzenberger RJ, Chtarbanova S, Rimkus SA, Fischer JA, Kaur G, Seppala JM, Swanson LC, Zajac JE, Ganetzky B, Wassarman DA (2015) Death following traumatic brain injury in Drosophila is associated with intestinal barrier dysfunction. eLife 4:e04790PubMedCentralCrossRefGoogle Scholar
  67. Ke X, Durrant C, Morris AP, Hunt S, Bentley DR, Deloukas P, Cardon LR (2004) Efficiency and consistency of haplotype tagging of dense SNP maps in multiple samples. Hum Mol Genet 13:2557–2565PubMedCrossRefGoogle Scholar
  68. Keinan A, Clark AG (2012) Recent explosive human population growth has resulted in an excess of rare genetic variants. Science 336:740–743PubMedPubMedCentralCrossRefGoogle Scholar
  69. Leips J, Mackay TFC (2000) Quantitative trait loci for life span in Drosophila melanogaster: interactions with genetic background and larval density. Genetics 155:1773–1788PubMedPubMedCentralGoogle Scholar
  70. Li L, Li Y, Zeng XC, Li J, Du XY (2016) Role of interleukin-4 genetic polymorphisms and environmental factors in the risk of asthma in children. Genet Mol Res 15:gmr15048873Google Scholar
  71. Liu J, Lewis G (2014) Environmental toxicity and poor cognitive outcomes in children and adults. J Environ Health 76:130–138PubMedPubMedCentralGoogle Scholar
  72. Long AD, Mullaney SL, Reid LA, Fry JD, Langley CH, Mackay TFC (1995) High resolution mapping of genetic factors affecting abdominal bristle number in Drosophila melanogaster. Genetics 139:1273–1291Google Scholar
  73. Mackay TFC (2014) Epistasis and quantitative traits: using model organisms to study gene-gene interactions. Nat Rev Genet 15:22–33PubMedCrossRefGoogle Scholar
  74. Mackay TFC (2015) Epistasis for quantitative traits in Drosophila. Methods Mol Biol 1253:47–70PubMedCrossRefGoogle Scholar
  75. Mackay TFC, Richards S, Stone EA, Barbadilla A, Ayroles JF, Zhu D, Casillas S, Han Y, Magwire MM, Cridland JM, Richardson MF, Anholt RRH, Barrón M, Bess C, Blankenburg KP, Carbone MA, Castellano D, Chaboub L, Duncan L, Harris Z, Javaid M, Jayaseelan JC, Jhangiani SN, Jordan KW, Lara F, Lawrence F, Lee SL, Librado P, Linheiro RS, Lyman RF, Mackey AJ, Munidasa M, Muzny DM, Nazareth L, Newsham I, Perales L, Pu LL, Qu C, Ràmia M, Reid JG, Rollmann SM, Rozas J, Saada N, Turlapati L, Worley KC, Wu YQ, Yamamoto A, Zhu Y, Bergman CM, Thornton KR, Mittelman D, Gibbs RA (2012) The Drosophila melanogaster Genetic Reference Panel. Nature 482:173–178PubMedPubMedCentralCrossRefGoogle Scholar
  76. Magwire MM, Yamamoto A, Carbone MA, Roshina NV, Symonenko AV, Pasyukova EG, Morozova TV, Mackay TFC (2010) Quantitative and molecular genetic analyses of mutations increasing Drosophila life span. PLoS Genet 6:e1001037PubMedPubMedCentralCrossRefGoogle Scholar
  77. Magwire MM, Fabian DK, Schweyen H, Cao C, Longdon B, Bayer F, Jiggins FM (2012) Genome-wide association studies reveal a simple genetic basis of resistance to naturally coevolving viruses in Drosophila melanogaster. PLoS Genet 8:e1003057PubMedPubMedCentralCrossRefGoogle Scholar
  78. Manolio TA, Collins FS, Cox NJ, Goldstein DB, Hindorff LA, Hunter DJ, McCarthy MI, Ramos EM, Cardon LR, Chakravarti A, Cho JH, Guttmacher AE, Kong A, Kruglyak L, Mardis E, Rotimi CN, Slatkin M, Valle D, Whittemore AS, Boehnke M, Clark AG, Eichler EE, Gibson G, Haines JL, Mackay TFC, McCarroll SA, Visscher PM (2009) Finding the missing heritability of complex diseases. Nature 461:747–753PubMedPubMedCentralCrossRefGoogle Scholar
  79. Martin CA, Barajas A, Lawless G, Lawal HO, Assani K, Lumintang YP, Nunez V, Krantz DE (2014) Synergistic effects on dopamine cell death in a Drosophila model of chronic toxin exposure. Neurotoxicology 44:344–351PubMedPubMedCentralCrossRefGoogle Scholar
  80. McDermott S, Bao W, Tong X, Cai B, Lawson A, Aelion CM (2014) Are different soil metals near the homes of pregnant women associated with mild and severe intellectual disability in children? Dev Med Child Neurol 56:888–897PubMedPubMedCentralCrossRefGoogle Scholar
  81. Mensch J, Lavagnino N, Carreira VP, Massaldi A, Hasson E, Fanara JJ (2008) Identifying candidate genes affecting developmental time in Drosophila melanogaster: pervasive pleiotropy and gene-by-environment interaction. BMC Dev Biol 8:78PubMedPubMedCentralCrossRefGoogle Scholar
  82. Mitchell CL, Latuszek CE, Vogel KR, Greenlund IM, Hobmeier RE, Ingram OK, Dufek SR, Pecore JL, Nip FR, Johnson ZJ, Ji X, Wei H, Gailing O, Werner T (2017) α-Amanitin resistance in Drosophila melanogaster: a genome-wide association approach. PLoS ONE 12:e0173162PubMedPubMedCentralCrossRefGoogle Scholar
  83. Mohlke KL, Boehnke M (2015) Recent advances in understanding the genetic architecture of type 2 diabetes. Hum Mol Genet 24:R85-R92PubMedCentralCrossRefGoogle Scholar
  84. Montgomery SL, Vorojeikina D, Huang W, Mackay TFC, Anholt RRH, Rand MD (2014) Genome-wide association analysis of tolerance to methylmercury toxicity in Drosophila implicates myogenic and neuromuscular developmental pathways. PLoS ONE 9:e110375PubMedPubMedCentralCrossRefGoogle Scholar
  85. Montooth KL, Marden JH, Clark AG (2003) Mapping determinants of variation in energy metabolism, respiration and flight in Drosophila. Genetics 165:623–635PubMedPubMedCentralGoogle Scholar
  86. Morgante F, Sørensen P, Sorensen DA, Maltecca C, Mackay TFC (2015) Genetic architecture of micro-environmental plasticity in Drosophila melanogaster. Sci Rep 5:9785PubMedPubMedCentralCrossRefGoogle Scholar
  87. Morozova TV, Ayroles JF, Jordan KW, Duncan LH, Carbone MA, Lyman RF, Stone EA, Govindaraju DR, Ellison CR, Mackay TFC, Anholt RRH (2009) Alcohol sensitivity in Drosophila: translational potential of systems genetics. Genetics 83:733–745CrossRefGoogle Scholar
  88. Morozova TV, Mackay TFC, Anholt RRH (2014) Genetics and genomics of alcohol sensitivity. Mol Genet Genomics 289:253–269PubMedPubMedCentralCrossRefGoogle Scholar
  89. Morozova TV, Huang W, Pray VA, Whitham T, Anholt RRH, Mackay TFC (2015) Polymorphisms in early neurodevelopmental genes affect natural variation in alcohol sensitivity in adult Drosophila. BMC Genomics 16:865PubMedPubMedCentralCrossRefGoogle Scholar
  90. Moskvina V, Craddock N, Müller-Myhsok B, Kam-Thong T, Green E, Holmans P, Owen MJ, O’Donovan MC (2011) An examination of single nucleotide polymorphism selection prioritization strategies for tests of gene-gene interaction. Biol Psychiatry 70:198–203PubMedPubMedCentralCrossRefGoogle Scholar
  91. Munafò MR, Durrant C, Lewis G, Flint J (2009) Gene X environment interactions at the serotonin transporter locus. Biol Psychiatry 65:211–219PubMedCrossRefGoogle Scholar
  92. Najarro MA, Hackett JL, Macdonald SJ (2017) Loci contributing to boric acid toxicity in two reference populations of Drosophila melanogaster. G3 7:1631–1641PubMedPubMedCentralGoogle Scholar
  93. Nelson CS, Beck JN, Wilson KA, Pilcher ER, Kapahi P, Brem RB (2016) Cross-phenotype association tests uncover genes mediating nutrient response in Drosophila. BMC Genomics 17:867PubMedPubMedCentralCrossRefGoogle Scholar
  94. Nguyen AH, Altomare LE, McElwain MC (2014) Decreased accumulation of cadmium in Drosophila selected for resistance suggests a mechanism independent of metallothionein. Biol Trace Elem Res 160:245–249PubMedCrossRefGoogle Scholar
  95. Park SY, Ludwig MZ, Tamarina NA, He BZ, Carl SH, Dickerson DA, Barse L, Arun B, Williams CL, Miles CM, Philipson LH, Steiner DF, Bell GI, Kreitman M (2014) Genetic complexity in a Drosophila model of diabetes-associated misfolded human proinsulin. Genetics 196:539–555PubMedCrossRefGoogle Scholar
  96. Pritchard JK, Rosenberg NA (1999) Use of unlinked genetic markers to detect population stratification in association studies. Am J Hum Genet 65:220–228PubMedPubMedCentralCrossRefGoogle Scholar
  97. Reich DE, Lander ES (2001) On the allelic spectrum of human disease. Trends Genet 17:502–510PubMedCrossRefGoogle Scholar
  98. Reich DE, Cargill M, Bolk S, Ireland J, Sabeti PC, Richter DJ, Lavery T, Kouyoumjian R, Farhadian SF, Ward R, Lander ES (2001) Linkage disequilibrium in the human genome. Nature 411:199–204PubMedCrossRefGoogle Scholar
  99. Reiter LT, Potocki L, Chien S, Gribskov M, Bier E (2001) A systematic analysis of human disease-associated gene sequences in Drosophila melanogaster. Genome Res 11:1114–1125PubMedPubMedCentralCrossRefGoogle Scholar
  100. Rocha TB, Hutz MH, Salatino-Oliveira A, Genro JP, Polanczyk GV, Sato JR, Wehrmeister FC, Barros FC, Menezes AM, Rohde LA, Anselmi L, Kieling C (2015) Gene-environment interaction in youth depression: replication of the 5-HTTLPR moderation in a diverse setting. Am J Psychiatry 172:978–985PubMedCrossRefGoogle Scholar
  101. Rohde PD, Gaertner B, Ward K, Sørensen P, Mackay TFC (2017) Genomic analysis of genotype-by-social environment interaction for Drosophila melanogaster aggressive behavior. Genetics 206:1969–1984PubMedCrossRefGoogle Scholar
  102. Ruden DM, Chen L, Possidente D, Possidente B, Rasouli P, Wang L, Lu X, Garfinkel MD, Hirsch HV, Page GP (2009) Genetical toxicogenomics in Drosophila identifies master-modulatory loci that are regulated by developmental exposure to lead. Neurotoxicology 30:898–914PubMedPubMedCentralCrossRefGoogle Scholar
  103. Sambandan D, Yamamoto A, Fanara JJ, Mackay TFC, Anholt RRH (2006) Dynamic genetic interactions determine odor-guided behavior in Drosophila melanogaster. Genetics 174:1349–1363PubMedPubMedCentralCrossRefGoogle Scholar
  104. Sanjuán R, Elena SF (2006) Epistasis correlates to genomic complexity. Proc Natl Acad Sci USA 103:14402–14405PubMedPubMedCentralCrossRefGoogle Scholar
  105. Shorter J, Couch C, Huang W, Carbone MA, Peiffer J, Anholt RRH, Mackay TFC (2015) Genetic architecture of natural variation in Drosophila melanogaster aggressive behavior. Proc Natl Acad Sci USA 112:E3555-E3563PubMedCentralCrossRefGoogle Scholar
  106. Sordillo JE, Kelly R, Bunyavanich S, McGeachie M, Qiu W, Croteau-Chonka DC, Soto-Quiros M, Avila L, Celedón JC, Brehm JM, Weiss ST, Gold DR, Litonjua AA (2015) Genome-wide expression profiles identify potential targets for gene-environment interactions in asthma severity. J Allergy Clin Immunol 136:885–892PubMedPubMedCentralCrossRefGoogle Scholar
  107. Srivastav SP, Kelleher ES (2017) Paternal induction of hybrid dysgenesis in Drosophila melanogaster is weakly correlated with both P-element and hobo element dosage. G3 7:1487–1497PubMedPubMedCentralCrossRefGoogle Scholar
  108. Stefansson H, Rujescu D, Cichon S, Pietiläinen OP, Ingason A, Steinberg S, Fossdal R, Sigurdsson E, Sigmundsson T, Buizer-Voskamp JE, Hansen T, Jakobsen KD, Muglia P, Francks C, Matthews PM, Gylfason A, Halldorsson BV, Gudbjartsson D, Thorgeirsson TE, Sigurdsson A, Jonasdottir A, Jonasdottir A, Bjornsson A, Mattiasdottir S, Blondal T, Haraldsson M, Magnusdottir BB, Giegling I, Möller HJ, Hartmann A, Shianna KV, Ge D, Need AC, Crombie C, Fraser G, Walker N, Lonnqvist J, Suvisaari J, Tuulio-Henriksson A, Paunio T, Toulopoulou T, Bramon E, Di Forti M, Murray R, Ruggeri M, Vassos E, Tosato S, Walshe M, Li T, Vasilescu C, Mühleisen TW, Wang AG, Ullum H, Djurovic S, Melle I, Olesen J, Kiemeney LA, Franke B, GROUP, Sabatti C, Freimer NB, Gulcher JR, Thorsteinsdottir U, Kong A, Andreassen OA, Ophoff RA, Georgi A, Rietschel M, Werge T, Petursson H, Goldstein DB, Nöthen MM, Peltonen L, Collier DA, St Clair D, Stefansson K (2008) Large recurrent microdeletions associated with schizophrenia. Nature 455:232–236PubMedPubMedCentralCrossRefGoogle Scholar
  109. Stefansson H, Ophoff RA, Steinberg S, Andreassen OA, Cichon S, Rujescu D, Werge T, Pietiläinen OP, Mors O, Mortensen PB, Sigurdsson E, Gustafsson O, Nyegaard M, Tuulio-Henriksson A, Ingason A, Hansen T, Suvisaari J, Lonnqvist J, Paunio T, Børglum AD, Hartmann A, Fink-Jensen A, Nordentoft M, Hougaard D, Norgaard-Pedersen B, Böttcher Y, Olesen J, Breuer R, Möller HJ, Giegling I, Rasmussen HB, Timm S, Mattheisen M, Bitter I, Réthelyi JM, Magnusdottir BB, Sigmundsson T, Olason P, Masson G, Gulcher JR, Haraldsson M, Fossdal R, Thorgeirsson TE, Thorsteinsdottir U, Ruggeri M, Tosato S, Franke B, Strengman E, Kiemeney LA, Genetic Risk Outcome in Psychosis (GROUP), Melle I, Djurovic S, Abramova L, Kaleda V, Sanjuan J, de Frutos R, Bramon E, Vassos E, Fraser G, Ettinger U, Picchioni M, Walker N, Toulopoulou T, Need AC, Ge D, Yoon JL, Shianna KV, Freimer NB, Cantor RM, Murray R, Kong A, Golimbet V, Carracedo A, Arango C, Costas J, Jönsson EG, Terenius L, Agartz I, Petursson H, Nöthen MM, Rietschel M, Matthews PM, Muglia P, Peltonen L, St Clair D, Goldstein DB, Stefansson K, Collier DA (2009) Common variants conferring risk of schizophrenia. Nature 460:744–747PubMedPubMedCentralGoogle Scholar
  110. Swarup S, Harbison ST, Hahn LE, Morozova TV, Yamamoto A, Mackay TFC, Anholt RRH (2012) Extensive epistasis for olfactory behavior, sleep and waking activity in Drosophila melanogaster. Genet Res 94:9–20CrossRefGoogle Scholar
  111. Swarup S, Huang W, Mackay TFC, Anholt RRH (2013) Analysis of natural variation reveals neurogenetic networks for Drosophila olfactory behavior. Proc Natl Acad Sci USA 110:1017–1022PubMedCrossRefGoogle Scholar
  112. Takahara B, Takahashi KH (2015) Genome-wide association study on male genital shape and size in Drosophila melanogaster. PLoS ONE 10:e0132846PubMedPubMedCentralCrossRefGoogle Scholar
  113. Thibault ST, Singer MA, Miyazaki WY, Milash B, Dompe NA, Singh CM, Buchholz R, Demsky M, Fawcett R, Francis-Lang HL, Ryner L, Cheung LM, Chong A, Erickson C, Fisher WW, Greer K, Hartouni SR, Howie E, Jakkula L, Joo D, Killpack K, Laufer A, Mazzotta J, Smith RD, Stevens LM, Stuber C, Tan LR, Ventura R, Woo A, Zakrajsek I, Zhao L, Chen F, Swimmer C, Kopczynski C, Duyk G, Winberg ML, Margolis J (2004) A complementary transposon tool kit for Drosophila melanogaster using P and piggyBac. Nat Genet 36:283–287PubMedCrossRefGoogle Scholar
  114. Turner TL, Miller PM, Cochrane VA (2013) Combining genome-wide methods to investigate the genetic complexity of courtship song variation in Drosophila melanogaster. Mol Biol Evol 30:2113–2120PubMedPubMedCentralCrossRefGoogle Scholar
  115. Unckless RL, Rottschaefer SM, Lazzaro BP (2015a) A genome-wide association study for nutritional indices in Drosophila. G3 5:417–425PubMedPubMedCentralCrossRefGoogle Scholar
  116. Unckless RL, Rottschaefer SM, Lazzaro BP (2015b) The complex contributions of genetics and nutrition to immunity in Drosophila melanogaster. PLoS Genet 11:e1005030PubMedPubMedCentralCrossRefGoogle Scholar
  117. Vaisnav M, Xing C, Ku HC, Hwang D, Stojadinovic S, Pertsemlidis A, Abrams JM (2014) Genome-wide association analysis of radiation resistance in Drosophila melanogaster. PLoS ONE 9:e104858PubMedPubMedCentralCrossRefGoogle Scholar
  118. Vonesch SC, Lamparter D, Mackay TFC, Bergmann S, Hafen E (2016) Genome-wide analysis reveals novel regulators of growth in Drosophila melanogaster. PLoS Genet 12:e1005616PubMedPubMedCentralCrossRefGoogle Scholar
  119. Wang P, Lyman RF, Mackay TFC, Anholt RRH (2010) Natural variation in odorant recognition among odorant-binding proteins in Drosophila melanogaster. Genetics 184:759–767PubMedPubMedCentralCrossRefGoogle Scholar
  120. Wang JB, Lu H-L, St. Leger RJ (2017) The genetic basis for variation in resistance to infection in the Drosophila melanogaster Genetic Reference Panel. PLoS Pathog 13:e1006260PubMedPubMedCentralCrossRefGoogle Scholar
  121. Webber C (2017) Epistasis in neuropsychiatric disorders. Trends Genet 33:256–265PubMedCrossRefGoogle Scholar
  122. Weber AL, Khan GF, Magwire MM, Tabor CL, Mackay TFC, Anholt RRH (2012) Genome-wide association for oxidative stress resistance in Drosophila melanogaster. PLoS ONE 7:e34745PubMedPubMedCentralCrossRefGoogle Scholar
  123. Wood AR, Esko T, Yang J, Vedantam S, Pers TH, Gustafsson S, Chu AY, Estrada K, Luan J, Kutalik Z, Amin N, Buchkovich ML, Croteau-Chonka DC, Day FR, Duan Y, Fall T, Fehrmann R, Ferreira T, Jackson AU, Karjalainen J, Lo KS, Locke AE, Mägi R, Mihailov E, Porcu E, Randall JC, Scherag A, Vinkhuyzen AA, Westra HJ, Winkler TW, Workalemahu T, Zhao JH, Absher D, Albrecht E, Anderson D, Baron J, Beekman M, Demirkan A, Ehret GB, Feenstra B, Feitosa MF, Fischer K, Fraser RM, Goel A, Gong J, Justice AE, Kanoni S, Kleber ME, Kristiansson K, Lim U, Lotay V, Lui JC, Mangino M, Mateo Leach I, Medina-Gomez C, Nalls MA, Nyholt DR, Palmer CD, Pasko D, Pechlivanis S, Prokopenko I, Ried JS, Ripke S, Shungin D, Stancáková A, Strawbridge RJ, Sung YJ, Tanaka T, Teumer A, Trompet S, van der Laan SW, van Setten J, Van Vliet-Ostaptchouk JV, Wang Z, Yengo L, Zhang W, Afzal U, Arnlöv J, Arscott GM, Bandinelli S, Barrett A, Bellis C, Bennett AJ, Berne C, Blüher M, Bolton JL, Böttcher Y, Boyd HA, Bruinenberg M, Buckley BM, Buyske S, Caspersen IH, Chines PS, Clarke R, Claudi-Boehm S, Cooper M, Daw EW, De Jong PA, Deelen J, Delgado G, Denny JC, Dhonukshe-Rutten R, Dimitriou M, Doney AS, Dörr M, Eklund N, Eury E, Folkersen L, Garcia ME, Geller F, Giedraitis V, Go AS, Grallert H, Grammer TB, Gräßler J, Grönberg H, de Groot LC, Groves CJ, Haessler J, Hall P, Haller T, Hallmans G, Hannemann A, Hartman CA, Hassinen M, Hayward C, Heard-Costa NL, Helmer Q, Hemani G, Henders AK, Hillege HL, Hlatky MA, Hoffmann W, Hoffmann P, Holmen O, Houwing-Duistermaat JJ, Illig T, Isaacs A, James AL, Jeff J, Johansen B, Johansson Å, Jolley J, Juliusdottir T, Junttila J, Kho AN, Kinnunen L, Klopp N, Kocher T, Kratzer W, Lichtner P, Lind L, Lindström J, Lobbens S, Lorentzon M, Lu Y, Lyssenko V, Magnusson PK, Mahajan A, Maillard M, McArdle WL, McKenzie CA, McLachlan S, McLaren PJ, Menni C, Merger S, Milani L, Moayyeri A, Monda KL, Morken MA, Müller G, Müller-Nurasyid M, Musk AW, Narisu N, Nauck M, Nolte IM, Nöthen MM, Oozageer L, Pilz S, Rayner NW, Renstrom F, Robertson NR, Rose LM, Roussel R, Sanna S, Scharnagl H, Scholtens S, Schumacher FR, Schunkert H, Scott RA, Sehmi J, Seufferlein T, Shi J, Silventoinen K, Smit JH, Smith AV, Smolonska J, Stanton AV, Stirrups K, Stott DJ, Stringham HM, Sundström J, Swertz MA, Syvänen AC, Tayo BO, Thorleifsson G, Tyrer JP, van Dijk S, van Schoor NM, van der Velde N, van Heemst D, van Oort FV, Vermeulen SH, Verweij N, Vonk JM, Waite LL, Waldenberger M, Wennauer R, Wilkens LR, Willenborg C, Wilsgaard T, Wojczynski MK, Wong A, Wright AF, Zhang Q, Arveiler D, Bakker SJ, Beilby J, Bergman RN, Bergmann S, Biffar R, Blangero J, Boomsma DI, Bornstein SR, Bovet P, Brambilla P, Brown MJ, Campbell H, Caulfield MJ, Chakravarti A, Collins R, Collins FS, Crawford DC, Cupples LA, Danesh J, de Faire U, den Ruijter HM, Erbel R, Erdmann J, Eriksson JG, Farrall M, Ferrannini E, Ferrières J, Ford I, Forouhi NG, Forrester T, Gansevoort RT, Gejman PV, Gieger C, Golay A, Gottesman O, Gudnason V, Gyllensten U, Haas DW, Hall AS, Harris TB, Hattersley AT, Heath AC, Hengstenberg C, Hicks AA, Hindorff LA, Hingorani AD, Hofman A, Hovingh GK, Humphries SE, Hunt SC, Hypponen E, Jacobs KB, Jarvelin MR, Jousilahti P, Jula AM, Kaprio J, Kastelein JJ, Kayser M, Kee F, Keinanen-Kiukaanniemi SM, Kiemeney LA, Kooner JS, Kooperberg C, Koskinen S, Kovacs P, Kraja AT, Kumari M, Kuusisto J, Lakka TA, Langenberg C, Le Marchand L, Lehtimäki T, Lupoli S, Madden PA, Männistö S, Manunta P, Marette A, Matise TC, McKnight B, Meitinger T, Moll FL, Montgomery GW, Morris AD, Morris AP, Murray JC, Nelis M, Ohlsson C, Oldehinkel AJ, Ong KK, Ouwehand WH, Pasterkamp G, Peters A, Pramstaller PP, Price JF, Qi L, Raitakari OT, Rankinen T, Rao DC, Rice TK, Ritchie M, Rudan I, Salomaa V, Samani NJ, Saramies J, Sarzynski MA, Schwarz PE, Sebert S, Sever P, Shuldiner AR, Sinisalo J, Steinthorsdottir V, Stolk RP, Tardif JC, Tönjes A, Tremblay A, Tremoli E, Virtamo J, Vohl MC, Electronic Medical Records and Genomics (eMEMERGEGE) Consortium, MIGen Consortium, PAGEGE Consortium, LifeLines Cohort Study, Amouyel P, Asselbergs FW, Assimes TL, Bochud M, Boehm BO, Boerwinkle E, Bottinger EP, Bouchard C, Cauchi S, Chambers JC, Chanock SJ, Cooper RS, de Bakker PI, Dedoussis G, Ferrucci L, Franks PW, Froguel P, Groop LC, Haiman CA, Hamsten A, Hayes MG, Hui J, Hunter DJ, Hveem K, Jukema JW, Kaplan RC, Kivimaki M, Kuh D, Laakso M, Liu Y, Martin NG, März W, Melbye M, Moebus S, Munroe PB, Njølstad I, Oostra BA, Palmer CN, Pedersen NL, Perola M, Pérusse L, Peters U, Powell JE, Power C, Quertermous T, Rauramaa R, Reinmaa E, Ridker PM, Rivadeneira F, Rotter JI, Saaristo TE, Saleheen D, Schlessinger D, Slagboom PE, Snieder H, Spector TD, Strauch K, Stumvoll M, Tuomilehto J, Uusitupa M, van der Harst P, Völzke H, Walker M, Wareham NJ, Watkins H, Wichmann HE, Wilson JF, Zanen P, Deloukas P, Heid IM, Lindgren CM, Mohlke KL, Speliotes EK, Thorsteinsdottir U, Barroso I, Fox CS, North KE, Strachan DP, Beckmann JS, Berndt SI, Boehnke M, Borecki IB, McCarthy MI, Metspalu A, Stefansson K, Uitterlinden AG, van Duijn CM, Franke L, Willer CJ, Price AL, Lettre G, Loos RJ, Weedon MN, Ingelsson E, O’Connell JR, Abecasis GR, Chasman DI, Goddard ME, Visscher PM, Hirschhorn JN, Frayling TM (2014) Defining the role of common variation in the genomic and biological architecture of adult human height. Nat Genet 46:1173–1186PubMedPubMedCentralCrossRefGoogle Scholar
  124. Yamamoto A, Anholt RRH, Mackay TFC (2009) Epistatic interactions attenuate mutations affecting startle behaviour in Drosophila melanogaster. Genet Res (Camb) 91:373–382Google Scholar
  125. Zeggini E, Scott LJ, Saxena R, Voight BF, Marchini JL, Hu T, de Bakker PI, Abecasis GR, Almgren P, Andersen G, Ardlie K, Boström KB, Bergman RN, Bonnycastle LL, Borch-Johnsen K, Burtt NP, Chen H, Chines PS, Daly MJ, Deodhar P, Ding CJ, Doney AS, Duren WL, Elliott KS, Erdos MR, Frayling TM, Freathy RM, Gianniny L, Grallert H, Grarup N, Groves CJ, Guiducci C, Hansen T, Herder C, Hitman GA, Hughes TE, Isomaa B, Jackson AU, Jørgensen T, Kong A, Kubalanza K, Kuruvilla FG, Kuusisto J, Langenberg C, Lango H, Lauritzen T, Li Y, Lindgren CM, Lyssenko V, Marvelle AF, Meisinger C, Midthjell K, Mohlke KL, Morken MA, Morris AD, Narisu N, Nilsson P, Owen KR, Palmer CN, Payne F, Perry JR, Pettersen E, Platou C, Prokopenko I, Qi L, Qin L, Rayner NW, Rees M, Roix JJ, Sandbaek A, Shields B, Sjögren M, Steinthorsdottir V, Stringham HM, Swift AJ, Thorleifsson G, Thorsteinsdottir U, Timpson NJ, Tuomi T, Tuomilehto J, Walker M, Watanabe RM, Weedon MN, Willer CJ, Wellcome Trust Case Control Consortium, Illig T, Hveem K, Hu FB, Laakso M, Stefansson K, Pedersen O, Wareham NJ, Barroso I, Hattersley AT, Collins FS, Groop L, McCarthy MI, Boehnke M, Altshuler D (2008) Meta-analysis of genome-wide association data and large-scale replication identifies additional susceptibility loci for type 2 diabetes. Nat Genet 40:638–645PubMedPubMedCentralCrossRefGoogle Scholar
  126. Zhai RG, Hiesinger PR, Koh TW, Verstreken P, Schulze KL, Cao Y, Jafar-Nejad H, Norga KK, Pan H, Bayat V, Greenbaum MP, Bellen HJ (2003) Mapping Drosophila mutations with molecularly defined P element insertions. Proc Natl Acad Sci USA 100:10860–10865PubMedPubMedCentralCrossRefGoogle Scholar
  127. Zhou S, Campbell TG, Stone EA, Mackay TFC, Anholt RRH (2012) Phenotypic plasticity of the Drosophila transcriptome. PLoS Genet 8:e1002593PubMedPubMedCentralCrossRefGoogle Scholar
  128. Zhou S, Morozova TV, Hussain YN, Luoma SE, McCoy L, Yamamoto A, Mackay TFC, Anholt RRH (2016) The genetic basis for variation in sensitivity to lead toxicity in Drosophila melanogaster. Environ Health Perspect 124:1062–1070PubMedPubMedCentralCrossRefGoogle Scholar
  129. Zhou S, Luoma SE, St Armour GE, Thakkar E, Mackay TFC, Anholt RRH (2017) A Drosophila model for toxicogenomics: genetic variation in susceptibility to heavy metal exposure. PLoS Genet 13:e1006907PubMedPubMedCentralCrossRefGoogle Scholar
  130. Zuk O, Hechter E, Sunyaev SR, Lander ES (2012) The mystery of missing heritability: genetic interactions create phantom heritability. Proc Natl Acad Sci USA 109:1193–1198PubMedPubMedCentralCrossRefGoogle Scholar
  131. Zwarts L, Magwire MM, Carbone MA, Versteven M, Herteleer L, Anholt RRH, Callaerts P, Mackay TFC (2011) Complex genetic architecture of Drosophila aggressive behavior. Proc Natl Acad Sci USA 108:17070–17075PubMedPubMedCentralCrossRefGoogle Scholar
  132. Zwarts L, Vanden Broeck L, Cappuyns E, Ayroles JF, Magwire MM, Vulsteke V, Clements J, Mackay TFC, Callaerts P (2015) The genetic basis of natural variation in mushroom body size in Drosophila melanogaster. Nat Commun 6:10115PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Program in Genetics, W. M. Keck Center for Behavioral Biology, and Department of Biological SciencesNorth Carolina State UniversityRaleighUSA

Personalised recommendations