Advertisement

Mammalian Genome

, Volume 28, Issue 11–12, pp 528–541 | Cite as

Exploring evidence of positive selection signatures in cattle breeds selected for different traits

  • Mengistie Taye
  • Wonseok Lee
  • Soomin Jeon
  • Joon Yoon
  • Tadelle Dessie
  • Olivier Hanotte
  • Okeyo Ally Mwai
  • Stephen Kemp
  • Seoae Cho
  • Sung Jong Oh
  • Hak-Kyo Lee
  • Heebal Kim
Article

Abstract

Since domestication, the genome landscape of cattle has been changing due to natural and artificial selection forces resulting in several general and specialized cattle breeds of the world. Identifying genomic regions affected due to these forces in livestock gives an insight into the history of selection for economically important traits and genetic adaptation to specific environments of the populations under consideration. This study explores the genes/genomic regions under selection in relation to the phenotypes of Holstein, Hanwoo, and N’Dama cattle breeds using Tajima’s D, XP-CLR, and XP-EHH population statistical methods. The whole genomes of 10 Holstein (South Korea), 11 Hanwoo (South Korea), and 10 N’Dama (West Africa—Guinea) cattle breeds re-sequenced to ~11x coverage and retained 37 million SNPs were used for the study. Selection signature analysis revealed 441, 512, and 461 genes under selection from Holstein, Hanwoo, and N’Dama cattle breeds, respectively. Among all these, seven genes including ARFGAP3, SNORA70, and other RNA genes were common between the breeds. From each of the gene lists, significant functional annotation cluster terms including milk protein and thyroid hormone signaling pathway (Holstein), histone acetyltransferase activity (Hanwoo), and renin secretion (N’Dama) were enriched. Genes that are related to the phenotypes of the respective breeds were also identified. Moreover, significant breed-specific missense variants were identified in CSN3, PAPPA2 (Holstein), C1orf116 (Hanwoo), and COMMD1 (N’Dama) genes. The genes identified from this study provide an insight into the biological mechanisms and pathways that are important in cattle breeds selected for different traits of economic significance.

Notes

Acknowledgements

This work was supported by a grant from the Next-Generation BioGreen 21 Program (Project No. PJ01134905), Rural Development Administration (RDA), Republic of Korea.

Author contributions

MT conceived and designed the study, analyzed the data, and wrote the paper; WL, SJ, and JY helped analyzing the data; OH, TD, SK, OAM, SC, SJO, HKL, and HK designed the project; HK organized and supervised the project.

Compliance with ethical standards

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Supplementary material

335_2017_9715_MOESM1_ESM.xls (338 kb)
Additional file 1: Summary of positively selected genes: Table S1. Holstein Tajima’s D detected genes; Table S2. Holstein XP-EHH detected genes; Table S3. Holstein XP-CLR detected genes; Table S4. Common genes between statistical methods used for Holstein breed; Table S5. Hanwoo Tajima’s D detected genes; Table S6. Hanwoo XP-EHH detected genes, Table S7. Hanwoo XP-CLR detected genes; Table S8. Common genes between statistical methods used for Hanwoo breed; Table S9. N’Dama Tajima’s D detected genes; Table S10. N’Dama XP-EHH detected genes; Table S11. N’Dama XP-CLR detected genes. Table S12. Common genes between statistical methods used for N’Dama breed; Table S13. Common genes between Holstein, Hanwoo, and N’Dama breeds. (XLS 338 KB)
335_2017_9715_MOESM2_ESM.xlsx (52 kb)
Additional file 2: Overlapping genes with previous studies. Table S14. Genes detected from Holstein cattle in this study that overlapped with previous studies; Table S15. Genes detected from Hanwoo cattle in this study that overlapped with previous studies; Table S16. Genes detected from N’Dama cattle in this study that overlapped with previous studies (XLSX 52 KB)
335_2017_9715_MOESM3_ESM.xls (300 kb)
Additional file 3: Summary of QTL overlapped genes: Table S17. XP-EHH detected genes overlapped with QTL regions in Holstein cattle; Table S18. XP-CLR detected genes overlapped with QTL regions in Holstein cattle; Table S19. Tajima’s D detected genes overlapped with QTL regions in Holstein cattle; Table S20. XP-EHH detected genes overlapped with QTL regions in Hanwoo cattle; Table S21. XP-CLR detected genes overlapped with QTL regions in Hanwoo cattle; Table S22. Tajima’s D detected genes overlapped with QTL regions in Hanwoo cattle; Table S23. XP-EHH detected genes overlapped with QTL regions in N’Dama cattle; Table S24. XP-CLR detected genes overlapped with QTL regions in N’Dama cattle; Table S25. Tajima’s D detected genes overlapped with QTL regions in N’Dama cattle. (XLS 299 KB)
335_2017_9715_MOESM4_ESM.xls (78 kb)
Additional file 4: SNP association: Table S26. Association of SNPs. (XLS 78 KB)
335_2017_9715_MOESM5_ESM.pptx (1 mb)
Additional file 5: Figure S1. Manhattan plot of the –log10 transformed Tajima’s D p values of a) Holstein, b) Hanwoo and 3) N’Dama cattle breeds. Figure S2. The structure of non-synonymous variants on a) ADIPOQ - 1:81006985, b) CPQ - rs109886870, c) PAPPA2 - rs210049354, and d) ATP10B - rs209490227 gene regions. Exons are indicated by vertical brown bars. Alleles are indicated by colored bars, the major allele (green bars) and the minor allele (orange bars). Breed specific significant non-synonymous SNPs are highlighted in yellow, the amino acid changes are indicated under the allele. The frequency of each haplotype is indicated on the right side of the figure. (PPTX 1051 KB)

References

  1. Aftab S, Semenec L, Chu JS-C, Chen N (2008) Identification and characterization of novel human tissue-specific RFX transcription factors. BMC Evol Biol 8(1):226PubMedPubMedCentralCrossRefGoogle Scholar
  2. Akhtar N, Streuli CH (2006) Rac1 links integrin-mediated adhesion to the control of lactational differentiation in mammary epithelia. J Cell Biol 173(5):781–793PubMedPubMedCentralCrossRefGoogle Scholar
  3. Ali MA, Adem A, Chandranath IS, Benedict S, Pathan JY, Nagelkerke N et al (2012) Responses to dehydration in the one-humped camel and effects of blocking the renin-angiotensin system. PLoS ONE 7(5):e37299PubMedPubMedCentralCrossRefGoogle Scholar
  4. Andrews S (2010) FastQC: a quality control tool for high throughput sequence data. Reference SourceGoogle Scholar
  5. Bahbahani H, Clifford H, Wragg D, Mbole-Kariuki MN, Van Tassell C, Sonstegard T et al (2015) Signatures of positive selection in East African Shorthorn Zebu: a genome-wide single nucleotide polymorphism analysis. Sci Rep. doi: 10.1038/srep11729 PubMedPubMedCentralGoogle Scholar
  6. Baumgartner M, Lemoine C, Al Seesi S, Karunakaran DKP, Sturrock N, Banday AR et al (2015) Minor splicing snRNAs are enriched in the developing mouse CNS and are crucial for survival of differentiating retinal neurons. Dev Neurobiol 75(9):895–907PubMedCrossRefGoogle Scholar
  7. Berthier D, Peylhard M, Dayo G-K, Flori L, Sylla S, Bolly S et al (2015) A comparison of phenotypic traits related to trypanotolerance in five West African cattle breeds highlights the value of shorthorn taurine breeds. PLoS One 10(5):e0126498PubMedPubMedCentralCrossRefGoogle Scholar
  8. Brisken C, Heineman A, Chavarria T, Elenbaas B, Tan J, Dey SK et al (2000) Essential function of Wnt-4 in mammary gland development downstream of progesterone signaling. Genes Dev 14(6):650–654PubMedPubMedCentralGoogle Scholar
  9. Browning SR, Browning BL (2007) Rapid and accurate haplotype phasing and missing-data inference for whole-genome association studies by use of localized haplotype clustering. Am J Hum Genet 81(5):1084–1097PubMedPubMedCentralCrossRefGoogle Scholar
  10. Cecchinato A, Ribeca C, Chessa S, Cipolat-Gotet C, Maretto F, Casellas J et al (2014) Candidate gene association analysis for milk yield, composition, urea nitrogen and somatic cell scores in Brown Swiss cows. Animal 8(07):1062–1070PubMedCrossRefGoogle Scholar
  11. Chen H, Patterson N, Reich D (2010) Population differentiation as a test for selective sweeps. Genome Res 20(3):393–402PubMedPubMedCentralCrossRefGoogle Scholar
  12. Chen SR, Yang LQ, Chong YT, Jie YS, Wu YK, Yang J et al (2015) Novel gain of function mutation in the SLC40A1 gene associated with hereditary haemochromatosis type 4. Intern Med J 45(6):672–676PubMedCrossRefGoogle Scholar
  13. Christians JK, De Zwaan DR, Fung SHY (2013) Pregnancy associated plasma protein A2 (PAPP-A2) affects bone size and shape and contributes to natural variation in postnatal growth in mice. PLoS ONE 8(2):e56260PubMedPubMedCentralCrossRefGoogle Scholar
  14. Cingolani P, Platts A, Wang LL, Coon M, Nguyen T, Wang L et al (2012) A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly 6(2):80–92PubMedPubMedCentralCrossRefGoogle Scholar
  15. Da Silva AS, Hoehne L, Tonin AA, Zanette RA, Wolkmer P, Costa MM et al (2009) Trypanosoma evansi: Levels of copper, iron and zinc in the bloodstream of infected cats. Exp Parasitol 123(1):35–38PubMedCrossRefGoogle Scholar
  16. Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA et al (2011) The variant call format and VCFtools. Bioinformatics 27(15):2156–2158PubMedPubMedCentralCrossRefGoogle Scholar
  17. Decker JE, McKay SD, Rolf MM, Kim J, Alcalá AM, Sonstegard TS et al (2014) Worldwide patterns of ancestry, divergence, and admixture in domesticated cattle. PLoS Genet 10(3):e1004254PubMedPubMedCentralCrossRefGoogle Scholar
  18. Dias M, Souza F, Takada L, Feitosa F, Costa R, Diaz I et al (2015) Study of lipid metabolism-related genes as candidate genes of sexual precocity in Nellore cattle. Gen Mol Res 14(1):234–243CrossRefGoogle Scholar
  19. Ding L, Zhao Y, Warren CL, Sullivan R, Eliceiri KW, Shull JD (2013) Association of cellular and molecular responses in the rat mammary gland to 17-estradiol with susceptibility to mammary cancer. BMC Cancer 13(1):1CrossRefGoogle Scholar
  20. Druso JE, Endo M, Lin M-cJ, Peng X, Antonyak MA, Meller S et al (2016) An essential role for Cdc42 in the functioning of the adult mammary gland. J Biol Chem 291(17):8886–8895PubMedPubMedCentralCrossRefGoogle Scholar
  21. Eddy SR (2001) Non-coding RNA genes and the modern RNA world. Nat Rev Genet 2(12):919–929PubMedCrossRefGoogle Scholar
  22. Esteve-Codina A, Paudel Y, Ferretti L, Raineri E, Megens H-J, Silió L et al (2013) Dissecting structural and nucleotide genome-wide variation in inbred Iberian pigs. BMC Genom 14(1):1CrossRefGoogle Scholar
  23. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14(8):2611–2620PubMedCrossRefGoogle Scholar
  24. Fernández ME, Goszczynski DE, Prando AJ, Peral-García P, Baldo A, Giovambattista G et al (2014) Assessing the association of single nucleotide polymorphisms in thyroglobulin gene with age of puberty in bulls. J Anim Sci Technol 56(1):1CrossRefGoogle Scholar
  25. Gómez J, Reguero JR, Coto E (2016) The ups and downs of genetic diagnosis of hypertrophic cardiomyopathy. Rev Esp Cardiol 69(1):61–68PubMedCrossRefGoogle Scholar
  26. Gouveia JJdS, Silva MVGBD, Paiva SR, Oliveira SMPD (2014) Identification of selection signatures in livestock species. Genet Mol Biol 37(2):330–342CrossRefGoogle Scholar
  27. Graw J (2009) Genetics of crystallins: cataract and beyond. Exp Eye Res 88(2):173–189PubMedCrossRefGoogle Scholar
  28. Guo X, Fang Q, Ma C, Zhou B, Wan Y, Jiang R (2016) Whole-genome resequencing of Xishuangbanna fighting chicken to identify signatures of selection. Genet Sel Evol 48(1):62PubMedPubMedCentralCrossRefGoogle Scholar
  29. Hansen P (2004) Physiological and cellular adaptations of zebu cattle to thermal stress. Anim Reprod Sci 82:349–360PubMedCrossRefGoogle Scholar
  30. Hansen L, Cole J, Marx G, Seykora A (1999) Productive life and reasons for disposal of Holstein cows selected for large versus small body size. J Dairy Sci 82(4):795–801PubMedCrossRefGoogle Scholar
  31. Häussler S (2015) Relevance of bovine adiponectin in the mammary gland of dairy cows. Vet J 204(2):132–133PubMedCrossRefGoogle Scholar
  32. Höglund JK, Guldbrandtsen B, Lund MS, Sahana G (2015) Identification of genomic regions associated with female fertility in Danish Jersey using whole genome sequence data. BMC Genet 16(1):1Google Scholar
  33. Horikoshi M, Yaghootkar H, Mook-Kanamori DO, Sovio U, Taal HR, Hennig BJ et al (2013) New loci associated with birth weight identify genetic links between intrauterine growth and adult height and metabolism. Nat Genet 45(1):76–82PubMedCrossRefGoogle Scholar
  34. Hsu SY, Kaipia A, McGee E, Lomeli M, Hsueh AJ (1997) Bok is a pro-apoptotic Bcl-2 protein with restricted expression in reproductive tissues and heterodimerizes with selective anti-apoptotic Bcl-2 family members. Proc Natl Acad Sci USA 94(23):12401–12406PubMedPubMedCentralCrossRefGoogle Scholar
  35. Huang DW, Sherman BT, Lempicki RA (2009) Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucl Acids Res 37(1):1–13CrossRefGoogle Scholar
  36. Jackson JE (1991) A User’s Guide to Principal Components. Wiley, New YorkCrossRefGoogle Scholar
  37. Jennen D, Vereijken A, Bovenhuis H, Crooijmans R, Veenendaal A, Van der Poel J et al (2004) Detection and localization of quantitative trait loci affecting fatness in broilers. Poult Sci 83(3):295–301PubMedCrossRefGoogle Scholar
  38. Kahoun J (1971) Heat tolerance in West African cattle. Ghana J Sci 11(1):19–26Google Scholar
  39. Karim L, Takeda H, Lin L, Druet T, Arias JA, Baurain D et al (2011) Variants modulating the expression of a chromosome domain encompassing PLAG1 influence bovine stature. Nat Genet 43(5):405–413PubMedCrossRefGoogle Scholar
  40. Kasvandik S, Sillaste G, Velthut-Meikas A, Mikelsaar AV, Hallap T, Padrik P et al (2015) Bovine sperm plasma membrane proteomics through biotinylation and subcellular enrichment. Proteomics 15(11):1906–1920PubMedCrossRefGoogle Scholar
  41. Khor CC, Miyake M, Chen LJ, Shi Y, Barathi VA, Qiao F et al (2013) Genome-wide association study identifies ZFHX1B as a susceptibility locus for severe myopia. Hum Mol Genet 22(25):5288–5294PubMedCrossRefGoogle Scholar
  42. Kim J, Cho S, Caetano-Anolles K, Kim H, Ryu Y-C (2015) Genome-wide detection and characterization of positive selection in Korean Native Black Pig from Jeju Island. BMC Genet 16(1):3PubMedPubMedCentralCrossRefGoogle Scholar
  43. Kim J, Hanotte O, Mwai OA, Dessie T, Bashir S, Diallo B et al (2017) The genome landscape of indigenous African cattle. Genome Biol 18(34)Google Scholar
  44. Korneliussen TS, Moltke I, Albrechtsen A, Nielsen R (2013) Calculation of Tajima’s D and other neutrality test statistics from low depth next-generation sequencing data. BMC Bioinform 14(1):289CrossRefGoogle Scholar
  45. Kucerova J, Matejicek A, Jandurová O, Sorensen P, Nemcova E, Stipkova M et al (2006) Milk protein genes CSN1S1, CSN2, CSN3, LGB and their relation to genetic values of milk production parameters in Czech Fleckvieh. Czech J Anim Sci 51(6):241Google Scholar
  46. Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9(4):357–359PubMedPubMedCentralCrossRefGoogle Scholar
  47. Leak SG (1999) Tsetse biology and ecology: their role in the epidemiology and control of trypanosomosis. CABI publishing, WallingfordGoogle Scholar
  48. Lecchi C, Giudice C, Uggè M, Scarafoni A, Baldi A, Sartorelli P (2015) Characterisation of adiponectin and its receptors in the bovine mammary gland and in milk. Vet J 203(3):296–301PubMedCrossRefGoogle Scholar
  49. Lee K-T, Chung W-H, Lee S-Y, Choi J-W, Kim J, Lim D et al (2013) Whole-genome resequencing of Hanwoo (Korean cattle) and insight into regions of homozygosity. BMC Genom 14(1):1CrossRefGoogle Scholar
  50. Lee H-J, Kim J, Lee T, Son JK, Yoon H-B, Baek K-S et al (2014a) Deciphering the genetic blueprint behind Holstein milk proteins and production. Genome Biol Evol 6(6):1366–1374 a)PubMedPubMedCentralCrossRefGoogle Scholar
  51. Lee S-H, Park B-H, Sharma A, Dang C-G, Lee S-S, Choi T-J et al (2014b) Hanwoo cattle: origin, domestication, breeding strategies and genomic selection. J Anim Sci Technol 56(1):2PubMedPubMedCentralCrossRefGoogle Scholar
  52. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N et al (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25(16):2078–2079PubMedPubMedCentralCrossRefGoogle Scholar
  53. Li Y-D, Ji Y-T, Zhou X-H, Li H-l, Zhang H-t, Xing Q et al (2015) TNNT2 gene polymorphisms are associated with susceptibility to idiopathic dilated cardiomyopathy in Kazak and Han Chinese. Med Sci Monit 21:3343PubMedPubMedCentralCrossRefGoogle Scholar
  54. Li Z, Chen J, Wang Z, Pan Y, Wang Q, Xu N et al (2016) Detection of selection signatures of population-specific genomic regions selected during domestication process in Jinhua pigs. Anim Genet 47(6):672–681PubMedCrossRefGoogle Scholar
  55. Liang J, Song W, Tromp G, Kolattukudy PE, Fu M (2008) Genome-wide survey and expression profiling of CCCH-zinc finger family reveals a functional module in macrophage activation. PLoS ONE 3(8):e2880PubMedPubMedCentralCrossRefGoogle Scholar
  56. Littlejohn M, Grala T, Sanders K, Walker C, Waghorn G, Macdonald K et al (2012) Genetic variation in PLAG1 associates with early life body weight and peripubertal weight and growth in Bos taurus. Anim Genet 43(5):591–594PubMedCrossRefGoogle Scholar
  57. Mai M, Sahana G, Christiansen F, Guldbrandtsen B (2010) A genome-wide association study for milk production traits in Danish Jersey cattle using a 50 K single nucleotide polymorphism chip. J Anim Sci 88(11):3522–3528PubMedCrossRefGoogle Scholar
  58. Matsson H, Eason J, Bookwalter CS, Klar J, Gustavsson P, Sunnegårdh J et al (2008) Alpha-cardiac actin mutations produce atrial septal defects. Hum Mol Genet 17(2):256–265PubMedCrossRefGoogle Scholar
  59. Mattioli RC, Pandey VS, Murray M, Fitzpatrick JL (2000) Immunogenetic influences on tick resistance in African cattle with particular reference to trypanotolerant N’Dama (Bos taurus) and trypanosusceptible Gobra zebu (Bos indicus) cattle. Acta Trop 75(3):263–277PubMedCrossRefGoogle Scholar
  60. McAninch EA, Bianco AC (2014) Thyroid hormone signaling in energy homeostasis and energy metabolism. Ann N Y Acad Sci 1311(1):77–87PubMedPubMedCentralCrossRefGoogle Scholar
  61. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A et al (2010) The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20(9):1297–1303PubMedPubMedCentralCrossRefGoogle Scholar
  62. Metzger J, Schrimpf R, Philipp U, Distl O (2013) Expression levels of LCORL are associated with body size in horses. PLoS ONE 8(2):e56497PubMedPubMedCentralCrossRefGoogle Scholar
  63. Moreno-Sánchez N, Rueda J, Carabaño MJ, Reverter A, McWilliam S, González C et al (2010) Skeletal muscle specific genes networks in cattle. Funct Integr Genom 10(4):609–618CrossRefGoogle Scholar
  64. Mozdziak P (2006) Linking embryonic myogenesis to meat quantity and quality. Pol J Food Nutr Sci 15(2):117Google Scholar
  65. Nart P, Williams A, Thompson H, Innocent G (2004) Morphometry of bovine dilated cardiomyopathy. J Comp Pathol 130(4):235–245PubMedCrossRefGoogle Scholar
  66. O’Dell SD, Day IN (1998) Molecules in focus Insulin-like growth factor II (IGF-II). Int J Biochem Cell Biol 30(7):767–771PubMedCrossRefGoogle Scholar
  67. Ogorevc J, Kunej T, Razpet A, Dovc P (2009) Database of cattle candidate genes and genetic markers for milk production and mastitis. Anim Genet 40(6):832–851PubMedPubMedCentralCrossRefGoogle Scholar
  68. Ogunsanmi A, Taiwo V, Onawumi B, Mbagwu H, Okoronkwo C (2000) Correlation of physiological plasma lipid levels with resistance of cattle to trypanosomosis. Veterinarski arhiv 70(5):251–257Google Scholar
  69. Owczarek-Lipska M, Plattet P, Zipperle L, Drögemüller C, Posthaus H, Dolf G et al (2011) A nonsense mutation in the optic atrophy 3 gene (OPA3) causes dilated cardiomyopathy in Red Holstein cattle. Genomics 97(1):51–57PubMedCrossRefGoogle Scholar
  70. Piirsoo M, Meijer D, Timmusk T (2009) Expression analysis of the CLCA gene family in mouse and human with emphasis on the nervous system. BMC Dev Biol 9(1):10PubMedPubMedCentralCrossRefGoogle Scholar
  71. Porto-Neto L, Lee S-H, Sonstegard T, Van Tassell C, Lee H, Gibson J et al (2014) Genome-wide detection of signatures of selection in Korean Hanwoo cattle. Anim Genet 45(2):180–190PubMedCrossRefGoogle Scholar
  72. Pryce JE, Hayes BJ, Bolormaa S, Goddard ME (2011) Polymorphic regions affecting human height also control stature in cattle. Genetics 187(3):981–984PubMedPubMedCentralCrossRefGoogle Scholar
  73. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D et al (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81(3):559–575PubMedPubMedCentralCrossRefGoogle Scholar
  74. Qanbari S, Simianer H (2014) Mapping signatures of positive selection in the genome of livestock. Livest Sci 166:133–143CrossRefGoogle Scholar
  75. Ramayo-Caldas Y, Mach N, Esteve-Codina A, Corominas J, Castelló A, Ballester M et al (2012) Liver transcriptome profile in pigs with extreme phenotypes of intramuscular fatty acid composition. BMC Genom 13(1):1CrossRefGoogle Scholar
  76. Ramayo-Caldas Y, Ballester M, Fortes MR, Esteve-Codina A, Castelló A, Noguera JL et al (2014) From SNP co-association to RNA co-expression: novel insights into gene networks for intramuscular fatty acid composition in porcine. BMC Genom 15(1):1CrossRefGoogle Scholar
  77. Randhawa IA, Khatkar MS, Thomson PC, Raadsma HW (2016) A meta-assembly of selection signatures in cattle. PLoS ONE 11(4):e0153013PubMedPubMedCentralCrossRefGoogle Scholar
  78. Rege J, Tawah C (1999) The state of African cattle genetic resources II. Geographical distribution, characteristics and uses of present-day breeds and strains. Anim Genet Resour Inf 26:1–25CrossRefGoogle Scholar
  79. Rezaei R, Wu Z, Hou Y, Bazer FW, Wu G (2016) Amino acids and mammary gland development: nutritional implications for milk production and neonatal growth. J Anim Sci Biotechnol 7(1):1CrossRefGoogle Scholar
  80. Rothammer S, Seichter D, Förster M, Medugorac I (2013) A genome-wide scan for signatures of differential artificial selection in ten cattle breeds. BMC Genom 14(1):1CrossRefGoogle Scholar
  81. Rubin C-J, Megens H-J, Barrio AM, Maqbool K, Sayyab S, Schwochow D et al (2012) Strong signatures of selection in the domestic pig genome. Proc Natl Acad Sci USA 109(48):19529–19536PubMedPubMedCentralCrossRefGoogle Scholar
  82. Sabeti PC, Varilly P, Fry B, Lohmueller J, Hostetter E, Cotsapas C et al (2007) Genome-wide detection and characterization of positive selection in human populations. Nature 449(7164):913–918PubMedPubMedCentralCrossRefGoogle Scholar
  83. Santana M, Ventura R, Utsunomiya Y, Neves H, Alexandre P, Oliveira Junior G et al (2015) A genomewide association mapping study using ultrasound-scanned information identifies potential genomic regions and candidate genes affecting carcass traits in Nellore cattle. J Anim Breed Genet 132(6):420–427PubMedCrossRefGoogle Scholar
  84. Sibut V, Hennequet-Antier C, Le Bihan-Duval E, Marthey S, Duclos MJ, Berri C (2011) Identification of differentially expressed genes in chickens differing in muscle glycogen content and meat quality. BMC Genom 12(1):1CrossRefGoogle Scholar
  85. Smedley R, Mullaney T, Rumbeiha W (2009) Copper-associated hepatitis in Labrador Retrievers. Vet Pathol 46(3):484–490PubMedCrossRefGoogle Scholar
  86. Sommerhalter M, Zhang Y, Rosenzweig AC (2007) Solution structure of the COMMD1 N-terminal domain. J Mol Biol 365(3):715–721PubMedCrossRefGoogle Scholar
  87. Stella A, Ajmone-Marsan P, Lazzari B, Boettcher P (2010) Identification of selection signatures in cattle breeds selected for dairy production. Genetics 185(4):1451–1461PubMedPubMedCentralCrossRefGoogle Scholar
  88. Suárez-Vega A, Gutiérrez-Gil B, Klopp C, Robert-Granie C, Tosser-Klopp G, Arranz JJ (2015) Characterization and comparative analysis of the milk transcriptome in two dairy sheep breeds using RNA sequencing. Sci Rep 5:18399PubMedPubMedCentralCrossRefGoogle Scholar
  89. Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123(3):585–595PubMedPubMedCentralGoogle Scholar
  90. Theurl I, Hilgendorf I, Nairz M, Tymoszuk P, Haschka D, Asshoff M et al (2016) On-demand erythrocyte disposal and iron recycling requires transient macrophages in the liver. Nat Med 22(8):945–951PubMedPubMedCentralCrossRefGoogle Scholar
  91. Traoré-Leroux T, Fumoux F, Roelants G (1985) Correlation of serum zinc levels with resistance of cattle to trypanosomiasis. Acta Trop 42(1):39–44PubMedGoogle Scholar
  92. Turner LM, Chuong EB, Hoekstra HE (2008) Comparative analysis of testis protein evolution in rodents. Genetics 179(4):2075–2089PubMedPubMedCentralCrossRefGoogle Scholar
  93. Utsunomiya YT, Do Carmo AS, Carvalheiro R, Neves HH, Matos MC, Zavarez LB et al (2013) Genome-wide association study for birth weight in Nellore cattle points to previously described orthologous genes affecting human and bovine height. BMC Genet 14(1):52PubMedPubMedCentralCrossRefGoogle Scholar
  94. Venturini G, Cardoso D, Baldi F, Freitas A, Aspilcueta-Borquis R, Santos D et al (2014) Association between single-nucleotide polymorphisms and milk production traits in buffalo. Genet Mol Res 13(4):10256–10268PubMedCrossRefGoogle Scholar
  95. Verghese J, Abrams J, Wang Y, Morano KA (2012) Biology of the heat shock response and protein chaperones: budding yeast (Saccharomyces cerevisiae) as a model system. Microbiol Mol Biol Rev 76(2):115–158PubMedPubMedCentralCrossRefGoogle Scholar
  96. Vitti JJ, Grossman SR, Sabeti PC (2013) Detecting natural selection in genomic data. Annu Rev Genet 47:97–120PubMedCrossRefGoogle Scholar
  97. Wang X, Chen J, Liu H, Xu Y, Wang X, Xue C et al (2008) The pig p160 co-activator family: full length cDNA cloning, expression and effects on intramuscular fat content in Longissimus Dorsi muscle. Domest Anim Endocrinol 35(2):208–216PubMedCrossRefGoogle Scholar
  98. Wickramasinghe S, Rincon G, Medrano J (2011) Variants in the pregnancy-associated plasma protein-A2 gene on Bos taurus autosome 16 are associated with daughter calving ease and productive life in Holstein cattle. J Dairy Sci 94(3):1552–1558PubMedCrossRefGoogle Scholar
  99. Xu L, Bickhart DM, Cole JB, Schroeder SG, Song J, Van Tassell CP et al (2015) Genomic signatures reveal new evidences for selection of important traits in domestic cattle. Mol Biol Evol 32(3):711–725PubMedCrossRefGoogle Scholar
  100. Yokoyama H (2010) Three-dimensional structure of membrane protein stomatin and function of stomatin-specific protease. Yakugaku zasshi 130(10):1289–1293PubMedCrossRefGoogle Scholar
  101. Zappaterra M, Braglia S, Bigi M, Zambonelli P, Davoli R (2015) Comparison of expression levels of fourteen genes involved in the lipid and energy metabolism in two pig breeds. Livest Sci 181:156–162CrossRefGoogle Scholar
  102. Zhang R (2016) Identification of candidate genes for porcine meat quality and investigation of effects of sulforaphane on porcine satellite cell. Rheinische Friedrich-Wilhelms-Universität Bonn, BonnGoogle Scholar
  103. Zhao F, McParland S, Kearney F, Du L, Berry DP (2015) Detection of selection signatures in dairy and beef cattle using high-density genomic information. Genet Sel Evol 47(1):1CrossRefGoogle Scholar
  104. Zheng A, Chang W, Liu G, Yue Y, Li J, Zhang S et al (2016) Molecular differences in hepatic metabolism between AA broiler and big bone chickens: a proteomic study. PLoS ONE 11(10):e0164702PubMedPubMedCentralCrossRefGoogle Scholar
  105. Zhou X (2010) Roles of androgen receptor in male and female reproduction: lessons from global and cell-specific androgen receptor knockout (ARKO) mice. J Androl 31(3):235–243PubMedCrossRefGoogle Scholar
  106. Zimin AV, Delcher AL, Florea L, Kelley DR, Schatz MC, Puiu D et al (2009) A whole-genome assembly of the domestic cow, Bos taurus. Genome Biol 10(4):R42PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Mengistie Taye
    • 1
    • 2
  • Wonseok Lee
    • 1
  • Soomin Jeon
    • 1
  • Joon Yoon
    • 3
  • Tadelle Dessie
    • 4
  • Olivier Hanotte
    • 4
    • 5
  • Okeyo Ally Mwai
    • 6
  • Stephen Kemp
    • 6
    • 7
  • Seoae Cho
    • 8
  • Sung Jong Oh
    • 9
  • Hak-Kyo Lee
    • 10
  • Heebal Kim
    • 1
    • 3
    • 8
    • 11
  1. 1.Department of Agricultural Biotechnology and Research Institute of Agriculture and Life SciencesSeoul National UniversitySeoulRepublic of Korea
  2. 2.College of Agriculture and Environmental SciencesBahir Dar UniversityBahir DarEthiopia
  3. 3.Department of Natural Science, Interdisciplinary Program in BioinformaticsSeoul National UniversitySeoulRepublic of Korea
  4. 4.International Livestock Research Institute (ILRI)Addis AbabaEthiopia
  5. 5.School of Life SciencesThe University of NottinghamNottinghamUK
  6. 6.International Livestock Research Institute (ILRI)NairobiKenya
  7. 7.The Centre for Tropical Livestock Genetics and Health, The Roslin InstituteThe University of EdinburghMidlothianUK
  8. 8.C&K genomicsSeoulRepublic of Korea
  9. 9.National Institute of Animal Science, RDAWanjuRepublic of Korea
  10. 10.Department of Animal Biotechnology, The Animal Molecular Genetics and Breeding CenterChonbuk National UniversityJeonjuRepublic of Korea
  11. 11.Institute for Biomedical SciencesShinshu UniversityNaganoJapan

Personalised recommendations