Mammalian Genome

, Volume 28, Issue 7–8, pp 338–347 | Cite as

Genome editing and genetic engineering in livestock for advancing agricultural and biomedical applications

  • Bhanu P. Telugu
  • Ki-Eun Park
  • Chi-Hun Park


Genetic modification of livestock has a longstanding and successful history, starting with domestication several thousand years ago. Modern animal breeding strategies predominantly based on marker-assisted and genomic selection, artificial insemination, and embryo transfer have led to significant improvement in the performance of domestic animals, and are the basis for regular supply of high quality animal derived food. However, the current strategy of breeding animals over multiple generations to introduce novel traits is not realistic in responding to the unprecedented challenges such as changing climate, pandemic diseases, and feeding an anticipated 3 billion increase in global population in the next three decades. Consequently, sophisticated genetic modifications that allow for seamless introgression of novel alleles or traits and introduction of precise modifications without affecting the overall genetic merit of the animal are required for addressing these pressing challenges. The requirement for precise modifications is especially important in the context of modeling human diseases for the development of therapeutic interventions. The animal science community envisions the genome editors as essential tools in addressing these critical priorities in agriculture and biomedicine, and for advancing livestock genetic engineering for agriculture, biomedical as well as “dual purpose” applications.



The primary author was supported by Agriculture and Food Research Initiative Competitive Grant # 2015-67015-22845 from the USDA National Institute of Food and Agriculture, and Maryland Agricultural Experiment Station.

Compliance with ethical standards

Conflict of interest

Drs. Bhanu Telugu and Ki-Eun Park are co-founders of RenOVAte Biosciences Inc, a large animal genome editing company.


  1. Alberio R, Croxall N, Allegrucci C (2010) Pig epiblast stem cells depend on activin/nodal signaling for pluripotency and self renewal. Stem Cells Dev 19:1627–1636PubMedPubMedCentralCrossRefGoogle Scholar
  2. Barry JS, Anthony RV (2008) The pregnant sheep as a model for human pregnancy. Theriogenology 69:55–67PubMedCrossRefGoogle Scholar
  3. Betteridge KJ (2003) A history of farm animal embryo transfer and some associated techniques. Anim Reprod Sci 79:203–244PubMedCrossRefGoogle Scholar
  4. Bleck GT, White BR, Miller DJ, Wheeler MB (1998) Production of bovine alpha-lactalbumin in the milk of transgenic pigs. J Anim Sci 76:3072–3078PubMedCrossRefGoogle Scholar
  5. Brinster RL, Chen HY, Trumbauer M, Senear AW, Warren R, Palmiter RD (1981) Somatic expression of herpes thymidine kinase in mice following injection of a fusion gene into eggs. Cell 27:223–231PubMedPubMedCentralCrossRefGoogle Scholar
  6. Brinster RL, Sandgren EP, Behringer RR, Palmiter RD (1989) No simple solution for making transgenic mice. Cell 59:239–241PubMedCrossRefGoogle Scholar
  7. Buhler TA, Bruyere T, Went DF, Stranzinger G, Burki K (1990) Rabbit beta-casein promoter directs secretion of human interleukin-2 into the milk of transgenic rabbits. Biotechnology (N Y) 8, 140–143PubMedGoogle Scholar
  8. Cabot RA, Kuhholzer B, Chan AW, Lai L, Park KW, Chong KY, Schatten G, Murphy CN, Abeydeera LR, Day BN, Prather RS (2001) Transgenic pigs produced using in vitro matured oocytes infected with a retroviral vector. Anim Biotechnol 12:205–214PubMedCrossRefGoogle Scholar
  9. Campbell KH, McWhir J, Ritchie WA, Wilmut I (1996) Sheep cloned by nuclear transfer from a cultured cell line. Nature 380:64–66PubMedCrossRefGoogle Scholar
  10. Camus S, Ko WK, Pioli E, Bezard E (2015) Why bother using non-human primate models of cognitive disorders in translational research? Neurobiol Learn Mem. doi: 10.1016/j.nlm.2015.06.012 PubMedGoogle Scholar
  11. Capecchi MR (1980) High efficiency transformation by direct microinjection of DNA into cultured mammalian cells. Cell 22:479–488PubMedCrossRefGoogle Scholar
  12. Capecchi MR (1989) Altering the genome by homologous recombination. Science 244:1288–1292PubMedCrossRefGoogle Scholar
  13. Carlson DF, Geurts AM, Garbe JR, Park CW, Rangel-Filho A, O’Grady SM, Jacob HJ, Steer CJ, Largaespada DA, Fahrenkrug SC (2011) Efficient mammalian germline transgenesis by cis-enhanced Sleeping Beauty transposition. Transgenic Res 20:29–45PubMedCrossRefGoogle Scholar
  14. Carlson DF, Tan W, Lillico SG, Stverakova D, Proudfoot C, Christian M, Voytas DF, Long CR, Whitelaw CB, Fahrenkrug SC (2012) Efficient TALEN-mediated gene knockout in livestock. Proc Natl Acad Sci USA 109:17382–17387PubMedPubMedCentralCrossRefGoogle Scholar
  15. Carvalho-Oliveira I, Scholte BJ, Penque D (2007) What have we learned from mouse models for cystic fibrosis? Expert Rev Mol Diagn 7:407–417PubMedCrossRefGoogle Scholar
  16. Casal M, Haskins M (2006) Large animal models and gene therapy. Eur J Hum Genet 14:266–272PubMedCrossRefGoogle Scholar
  17. Chang K, Qian J, Jiang M, Liu YH, Wu MC, Chen CD, Lai CK, Lo HL, Hsiao CT, Brown L, Bolen J Jr, Huang HI, Ho PY, Shih PY, Yao CW, Lin WJ, Chen CH, Wu FY, Lin YJ, Xu J, Wang K (2002) Effective generation of transgenic pigs and mice by linker based sperm-mediated gene transfer. BMC Biotechnol 2:5PubMedPubMedCentralCrossRefGoogle Scholar
  18. Chen F, Wang Y, Yuan Y, Zhang W, Ren Z, Jin Y, Liu X, Xiong Q, Chen Q, Zhang M, Li X, Zhao L, Li Z, Wu Z, Zhang Y, Hu F, Huang J, Li R, Dai Y (2015) Generation of B cell-deficient pigs by highly efficient CRISPR/Cas9-mediated gene targeting. J Genet Genom 42:437–444CrossRefGoogle Scholar
  19. Choulika A, Perrin A, Dujon B, Nicolas JF (1995) Induction of homologous recombination in mammalian chromosomes by using the I-SceI system of Saccharomyces cerevisiae. Mol Cell Biol 15:1968–1973PubMedPubMedCentralCrossRefGoogle Scholar
  20. Christian M, Cermak T, Doyle EL, Schmidt C, Zhang F, Hummel A, Bogdanove AJ, Voytas DF (2010) Targeting DNA double-strand breaks with TAL effector nucleases. Genetics 186:757–761PubMedPubMedCentralCrossRefGoogle Scholar
  21. Cibelli JB, Stice SL, Golueke PJ, Kane JJ, Jerry J, Blackwell C, Ponce de Leon FA, Robl JM (1998) Cloned transgenic calves produced from nonquiescent fetal fibroblasts. Science 280:1256–1258PubMedCrossRefGoogle Scholar
  22. Clark KJ, Carlson DF, Fahrenkrug SC (2007) Pigs taking wing with transposons and recombinases. Genome Biol 8(Suppl 1):S13PubMedPubMedCentralCrossRefGoogle Scholar
  23. Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, Zhang F (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–823PubMedPubMedCentralCrossRefGoogle Scholar
  24. Cuffee Y, Ogedegbe C, Williams NJ, Ogedegbe G, Schoenthaler A (2014) Psychosocial risk factors for hypertension: an update of the literature. Curr Hypertens Rep 16:483PubMedPubMedCentralCrossRefGoogle Scholar
  25. Denning C, Burl S, Ainslie A, Bracken J, Dinnyes A, Fletcher J, King T, Ritchie M, Ritchie WA, Rollo M, de Sousa P, Travers A, Wilmut I, Clark AJ (2001) Deletion of the alpha(1,3)galactosyl transferase (GGTA1) gene and the prion protein (PrP) gene in sheep. Nat Biotechnol 19:559–562PubMedCrossRefGoogle Scholar
  26. Ebert KM, Selgrath JP, DiTullio P, Denman J, Smith TE, Memon MA, Schindler JE, Monastersky GM, Vitale JA, Gordon K (1991) Transgenic production of a variant of human tissue-type plasminogen activator in goat milk: Generation of transgenic goats and analysis of expression. Nat Biotechnol 9:835–838CrossRefGoogle Scholar
  27. Federspiel MJ, Hughes SH (1997) Retroviral gene delivery. Methods Cell Biol 52:179–214PubMedCrossRefGoogle Scholar
  28. Gafni O, Weinberger L, Mansour AA, Manor YS, Chomsky E, Ben-Yosef D, Kalma Y, Viukov S, Maza I, Zviran A, Rais Y, Shipony Z, Mukamel Z, Krupalnik V, Zerbib M, Geula S, Caspi I, Schneir D, Shwartz T, Gilad S, Amann-Zalcenstein D, Benjamin S, Amit I, Tanay A, Massarwa R, Novershtern N, Hanna JH (2013) Derivation of novel human ground state naive pluripotent stem cells. Nature 504:282–286PubMedCrossRefGoogle Scholar
  29. Galli C, Lagutina I, Perota A, Colleoni S, Duchi R, Lucchini F, Lazzari G (2012) Somatic cell nuclear transfer and transgenesis in large animals: current and future insights. Reprod Domest Anim 47(Suppl 3):2–11PubMedCrossRefGoogle Scholar
  30. Gandolfi F (2000) Sperm-mediated transgenesis. Theriogenology 53:127–137PubMedCrossRefGoogle Scholar
  31. Geijsen N, Horoschak M, Kim K, Gribnau J, Eggan K, Daley GQ (2004) Derivation of embryonic germ cells and male gametes from embryonic stem cells. Nature 427:148–154PubMedCrossRefGoogle Scholar
  32. Goliasova E, Wolf J (2004) Impact of the ESR gene on litter size and production traits in Czech Large White pigs. Anim Genet 35:293–297PubMedCrossRefGoogle Scholar
  33. Golovan SP, Meidinger RG, Ajakaiye A, Cottrill M, Wiederkehr MZ, Barney DJ, Plante C, Pollard JW, Fan MZ, Hayes MA, Laursen J, Hjorth JP, Hacker RR, Phillips JP, Forsberg CW (2001) Pigs expressing salivary phytase produce low-phosphorus manure. Nat Biotechnol 19:741–745PubMedCrossRefGoogle Scholar
  34. Gordon JW, Scangos GA, Plotkin DJ, Barbosa JA, Ruddle FH (1980) Genetic transformation of mouse embryos by microinjection of purified DNA. Proc Natl Acad Sci USA 77:7380–7384PubMedPubMedCentralCrossRefGoogle Scholar
  35. Graessmann A, Graessmann M, Topp WC, Botchan M (1979) Retransformation of a simian virus 40 revertant cell line, which is resistant to viral and DNA infections, by microinjection of viral DNA. J Virol 32:989–994PubMedPubMedCentralGoogle Scholar
  36. Grubb BR, Boucher RC (1999) Pathophysiology of gene-targeted mouse models for cystic fibrosis. Physiol Rev 79:S193–S214PubMedGoogle Scholar
  37. Hai T, Teng F, Guo R, Li W, Zhou Q (2014) One-step generation of knockout pigs by zygote injection of CRISPR/Cas system. Cell Res 24:372–375PubMedPubMedCentralCrossRefGoogle Scholar
  38. Hammer RE, Pursel VG, Rexroad CE Jr, Wall RJ, Bolt DJ, Ebert KM, Palmiter RD, Brinster RL (1985) Production of transgenic rabbits, sheep and pigs by microinjection. Nature 315:680–683CrossRefGoogle Scholar
  39. Harris MJ, Juriloff DM (2010) An update to the list of mouse mutants with neural tube closure defects and advances toward a complete genetic perspective of neural tube closure. Birth defects research. Birth Defects Res A 88:653–669CrossRefGoogle Scholar
  40. Hayashi K, Ohta H, Kurimoto K, Aramaki S, Saitou M (2011) Reconstitution of the mouse germ cell specification pathway in culture by pluripotent stem cells. Cell 146:519–532PubMedCrossRefGoogle Scholar
  41. Hayashi K, Ogushi S, Kurimoto K, Shimamoto S, Ohta H, Saitou M (2012) Offspring from oocytes derived from in vitro primordial germ cell-like cells in mice. Science 338:971–975PubMedCrossRefGoogle Scholar
  42. Hofmann A, Kessler B, Ewerling S, Weppert M, Vogg B, Ludwig H, Stojkovic M, Boelhauve M, Brem G, Wolf E, Pfeifer A (2003) Efficient transgenesis in farm animals by lentiviral vectors. EMBO Rep 4:1054–1060PubMedPubMedCentralCrossRefGoogle Scholar
  43. Honaramooz A, Megee S, Zeng W, Destrempes MM, Overton SA, Luo J, Galantino-Homer H, Modelski M, Chen F, Blash S, Melican DT, Gavin WG, Ayres S, Yang F, Wang PJ, Echelard Y, Dobrinski I (2008) Adeno-associated virus (AAV)-mediated transduction of male germ line stem cells results in transgene transmission after germ cell transplantation. FASEB J 22:374–382PubMedCrossRefGoogle Scholar
  44. Houde C, Banks KG, Coulombe N, Rasper D, Grimm E, Roy S, Simpson EM, Nicholson DW (2004) Caspase-7 expanded function and intrinsic expression level underlies strain-specific brain phenotype of caspase-3-null mice. J Neurosci 24:9977–9984PubMedCrossRefGoogle Scholar
  45. Huang TT, Naeemuddin M, Elchuri S, Yamaguchi M, Kozy HM, Carlson EJ, Epstein CJ (2006) Genetic modifiers of the phenotype of mice deficient in mitochondrial superoxide dismutase. Hum Mol Genet 15:1187–1194PubMedCrossRefGoogle Scholar
  46. Hubner K, Fuhrmann G, Christenson LK, Kehler J, Reinbold R, De La Fuente R, Wood J, Strauss JF 3rd, Boiani M, Scholer HR (2003) Derivation of oocytes from mouse embryonic stem cells. Science 300:1251–1256PubMedCrossRefGoogle Scholar
  47. Jabed A, Wagner S, McCracken J, Wells DN, Laible G (2012) Targeted microRNA expression in dairy cattle directs production of beta-lactoglobulin-free, high-casein milk. Proc Natl Acad Sci USA 109:16811–16816PubMedPubMedCentralCrossRefGoogle Scholar
  48. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821PubMedCrossRefGoogle Scholar
  49. Jinek M, East A, Cheng A, Lin S, Ma E, Doudna J (2013) RNA-programmed genome editing in human cells. eLife 2:e00471PubMedPubMedCentralCrossRefGoogle Scholar
  50. Kang JT, Ryu J, Cho B, Lee EJ, Yun YJ, Ahn S, Lee J, Ji DY, Lee K, Park KW (2016) Generation of RUNX3 knockout pigs using CRISPR/Cas9-mediated gene targeting. Reprod Domest Anim 51:970–978PubMedCrossRefGoogle Scholar
  51. Kass EM, Jasin M (2010) Collaboration and competition between DNA double-strand break repair pathways. FEBS Lett 584, 3703–3708PubMedPubMedCentralCrossRefGoogle Scholar
  52. Kim YG, Cha J, Chandrasegaran S (1996) Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc Natl Acad Sci USA 93:1156–1160PubMedPubMedCentralCrossRefGoogle Scholar
  53. Kong BW, Carlson DF, Fahrenkrug SC, Foster DN (2008) Application of the Sleeping Beauty transposon system to avian cells. Anim Genet 39:180–186PubMedCrossRefGoogle Scholar
  54. Kuroiwa Y, Kasinathan P, Matsushita H, Sathiyaselan J, Sullivan EJ, Kakitani M, Tomizuka K, Ishida I, Robl JM (2004) Sequential targeting of the genes encoding immunoglobulin-mu and prion protein in cattle. Nat Genet 36:775–780PubMedCrossRefGoogle Scholar
  55. Lai L, Kang JX, Li R, Wang J, Witt WT, Yong HY, Hao Y, Wax DM, Murphy CN, Rieke A, Samuel M, Linville ML, Korte SW, Evans RW, Starzl TE, Prather RS, Dai Y (2006) Generation of cloned transgenic pigs rich in omega-3 fatty acids. Nat Biotechnol 24:435–436PubMedPubMedCentralCrossRefGoogle Scholar
  56. Lavine G (2009) FDA approves first biological product derived from transgenic animal. Am J Health-System Pharm 66:518CrossRefGoogle Scholar
  57. Lavitrano M, Forni M, Varzi V, Pucci L, Bacci ML, Di Stefano C, Fioretti D, Zoraqi G, Moioli B, Rossi M, Lazzereschi D, Stoppacciaro A, Seren E, Alfani D, Cortesini R, Frati L (1997) Sperm-mediated gene transfer: production of pigs transgenic for a human regulator of complement activation. Transplant Proc 29:3508–3509PubMedCrossRefGoogle Scholar
  58. Lavitrano M, Busnelli M, Cerrito MG, Giovannoni R, Manzini S, Vargiolu A (2006) Sperm-mediated gene transfer. Reprod Fertil Dev 18:19–23PubMedCrossRefGoogle Scholar
  59. Li XJ, Li S (2012) Influence of species differences on the neuropathology of transgenic Huntington’s disease animal models. J Genet Genom 39:239–245CrossRefGoogle Scholar
  60. Lillico SG, Proudfoot C, King TJ, Tan W, Zhang L, Mardjuki R, Paschon DE, Rebar EJ, Urnov FD, Mileham AJ, McLaren DG, Whitelaw CB (2016) Mammalian interspecies substitution of immune modulatory alleles by genome editing. Scientific reports 6:21645PubMedPubMedCentralCrossRefGoogle Scholar
  61. Lyall J, Irvine RM, Sherman A, McKinley TJ, Nunez A, Purdie A, Outtrim L, Brown IH, Rolleston-Smith G, Sang H, Tiley L (2011) Suppression of avian influenza transmission in genetically modified chickens. Science 331:223–226PubMedCrossRefGoogle Scholar
  62. Macdonald J, Glover JD, Taylor L, Sang HM, McGrew MJ (2010) Characterisation and germline transmission of cultured avian primordial germ cells. PLoS ONE 5:e15518PubMedPubMedCentralCrossRefGoogle Scholar
  63. Maga EA, Cullor JS, Smith W, Anderson GB, Murray JD (2006a) Human lysozyme expressed in the mammary gland of transgenic dairy goats can inhibit the growth of bacteria that cause mastitis and the cold-spoilage of milk. Foodborne Pathog Dis 3:384–392PubMedCrossRefGoogle Scholar
  64. Maga EA, Walker RL, Anderson GB, Murray JD (2006b) Consumption of milk from transgenic goats expressing human lysozyme in the mammary gland results in the modulation of intestinal microflora. Transgenic Res 15:515–519PubMedCrossRefGoogle Scholar
  65. Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, Norville JE, Church GM (2013) RNA-guided human genome engineering via Cas9. Science 339:823–826PubMedPubMedCentralCrossRefGoogle Scholar
  66. McNatty KP, Smith P, Moore LG, Reader K, Lun S, Hanrahan JP, Groome NP, Laitinen M, Ritvos O, Juengel JL (2005) Oocyte-expressed genes affecting ovulation rate. Mol Cell Endocrinol 234:57–66PubMedCrossRefGoogle Scholar
  67. Meurens F, Summerfield A, Nauwynck H, Saif L, Gerdts V (2012) The pig: a model for human infectious diseases. Trends Microbiol 20:50–57PubMedCrossRefGoogle Scholar
  68. Montier T, Delepine P, Pichon C, Ferec C, Porteous DJ, Midoux P (2004) Non-viral vectors in cystic fibrosis gene therapy: progress and challenges. Trends Biotechnol 22:586–592PubMedCrossRefGoogle Scholar
  69. Morton AJ, Howland DS (2013) Large genetic animal models of Huntington’s Disease. J Huntingtons Dis 2:3–19PubMedGoogle Scholar
  70. Navarro SJ, Trinh T, Lucas CA, Ross AJ, Waymire KG, Macgregor GR (2012) The C57BL/6 J mouse strain background modifies the effect of a mutation in Bcl2l2. G3 2:99–102Google Scholar
  71. Ni J, Clark KJ, Fahrenkrug SC, Ekker SC (2008) Transposon tools hopping in vertebrates. Brief Funct Genom Proteom 7:444–453CrossRefGoogle Scholar
  72. Nicholson A, Reifsnyder PC, Malcolm RD, Lucas CA, MacGregor GR, Zhang W, Leiter EH (2010) Diet-induced obesity in two C57BL/6 substrains with intact or mutant nicotinamide nucleotide transhydrogenase (Nnt) gene. Obesity 18:1902–1905PubMedPubMedCentralCrossRefGoogle Scholar
  73. Nowak-Imialek M, Niemann H (2012) Pluripotent cells in farm animals: state of the art and future perspectives. Reprod Fertil Dev 25:103–128PubMedCrossRefGoogle Scholar
  74. Onishi A, Iwamoto M, Akita T, Mikawa S, Takeda K, Awata T, Hanada H, Perry AC (2000) Pig cloning by microinjection of fetal fibroblast nuclei. Science 289:1188–1190PubMedCrossRefGoogle Scholar
  75. Park KE, Kaucher AV, Powell A, Waqas MS, Sandmaier SE, Oatley MJ, Park CH, Tibary A, Donovan DM, Blomberg LA, Lillico SG, Whitelaw CB, Mileham A, Telugu BP, Oatley JM (2017a) Generation of germline ablated male pigs by CRISPR/Cas9 editing of the NANOS2 gene. Sci Rep 7:40176PubMedPubMedCentralCrossRefGoogle Scholar
  76. Park KE, Powell A, Sandmaier SE, Kim CM, Mileham A, Donovan DM, Telugu BP (2017b) Targeted gene knock-in by CRISPR/Cas ribonucleoproteins in porcine zygotes. Sci Rep 7:42458PubMedPubMedCentralCrossRefGoogle Scholar
  77. Patterson JK, Lei XG, Miller DD (2008) The pig as an experimental model for elucidating the mechanisms governing dietary influence on mineral absorption. Exp Biol Med 233:651–664CrossRefGoogle Scholar
  78. Peng J, Wang Y, Jiang J, Zhou X, Song L, Wang L, Ding C, Qin J, Liu L, Wang W, Liu J, Huang X, Wei H, Zhang P (2015) Production of human albumin in pigs through CRISPR/Cas9-mediated knockin of human cDNA into swine albumin locus in the zygotes. Sci Rep 5:16705PubMedPubMedCentralCrossRefGoogle Scholar
  79. Petersen B, Niemann H (2015) Molecular scissors and their application in genetically modified farm animals. Transgenic Res 24:381–396PubMedCrossRefGoogle Scholar
  80. Petersen B, Frenzel A, Lucas-Hahn A, Herrmann D, Hassel P, Klein S, Ziegler M, Hadeler KG, Niemann H (2016) Efficient production of biallelic GGTA1 knockout pigs by cytoplasmic microinjection of CRISPR/Cas9 into zygotes. Xenotransplantation 23:338–346PubMedCrossRefGoogle Scholar
  81. Plasterk RH, Izsvak Z, Ivics Z (1999) Resident aliens: the Tc1/mariner superfamily of transposable elements. Trends Genet 15, 326–332PubMedCrossRefGoogle Scholar
  82. Porter TE, Couger GS, Morpurgo B (1995) Evidence that somatotroph differentiation during chicken embryonic development is stimulated by a blood-borne signal. Endocrinology 136:3721–3728PubMedCrossRefGoogle Scholar
  83. Prather RS, Shen M, Dai Y (2008) Genetically modified pigs for medicine and agriculture. Biotechnol Genet Eng Rev 25:245–265PubMedGoogle Scholar
  84. Pursel VG, Mitchell AD, Bee G, Elsasser TH, McMurtry JP, Wall RJ, Coleman ME, Schwartz RJ (2004) Growth and tissue accretion rates of swine expressing an insulin-like growth factor I transgene. Anim Biotechnol 15:33–45PubMedCrossRefGoogle Scholar
  85. Rouet P, Smih F, Jasin M (1994) Introduction of double-strand breaks into the genome of mouse cells by expression of a rare-cutting endonuclease. Mol Cell Biol 14:8096–8106PubMedPubMedCentralCrossRefGoogle Scholar
  86. Scheerlinck JP, Snibson KJ, Bowles VM, Sutton P (2008) Biomedical applications of sheep models: from asthma to vaccines. Trends Biotechnol 26:259–266PubMedCrossRefGoogle Scholar
  87. Schmidt C (2006) Belated approval of first recombinant protein from animal. Nat Biotechnol 24:877PubMedCrossRefGoogle Scholar
  88. Smith C (1989) Cloning and genetic improvement of beef cattle. Anim Prod 49:49–62CrossRefGoogle Scholar
  89. Solaiman F, Zink MA, Xu G, Grunkemeyer J, Cosgrove D, Saenz J, Hodgson CP (2000) Modular retro-vectors for transgenic and therapeutic use. Mol Reprod Dev 56:309–315PubMedCrossRefGoogle Scholar
  90. Swindle MM, Makin A, Herron AJ, Clubb FJ Jr, Frazier KS (2012) Swine as models in biomedical research and toxicology testing. Vet Pathol 49:344–356PubMedCrossRefGoogle Scholar
  91. Symington LS, Gautier J (2011) Double-strand break end resection and repair pathway choice. Annu Rev Genet 45:247–271PubMedCrossRefGoogle Scholar
  92. Szybalska EH, Szybalski W (1962) Genetics of human cess line. IV. DNA-mediated heritable transformation of a biochemical trait. Proc Natl Acad Sci USA 48:2026–2034PubMedPubMedCentralCrossRefGoogle Scholar
  93. Tan W, Proudfoot C, Lillico SG, Whitelaw CB (2016) Gene targeting, genome editing: from Dolly to editors. Transgenic Res. doi: 10.1007/s11248-016-9932-x PubMedPubMedCentralGoogle Scholar
  94. Tanihara F, Takemoto T, Kitagawa E, Rao S, Do LT, Onishi A, Yamashita Y, Kosugi C, Suzuki H, Sembon S, Suzuki S, Nakai M, Hashimoto M, Yasue A, Matsuhisa M, Noji S, Fujimura T, Fuchimoto D, Otoi T (2016) Somatic cell reprogramming-free generation of genetically modified pigs. Sci Adv 2:e1600803PubMedPubMedCentralCrossRefGoogle Scholar
  95. Telugu BP, Ezashi T, Roberts RM (2010) Porcine induced pluripotent stem cells analogous to naive and primed embryonic stem cells of the mouse. Int J Dev Biol 54:1703–1711PubMedCrossRefGoogle Scholar
  96. Telugu BP, Ezashi T, Sinha S, Alexenko AP, Spate L, Prather RS, Roberts RM (2011) Leukemia inhibitory factor (LIF)-dependent, pluripotent stem cells established from inner cell mass of porcine embryos. J Biol Chem 286:28948–28953PubMedPubMedCentralCrossRefGoogle Scholar
  97. Threadgill DW, Dlugosz AA, Hansen LA, Tennenbaum T, Lichti U, Yee D, LaMantia C, Mourton T, Herrup K, Harris RC et al (1995) Targeted disruption of mouse EGF receptor: effect of genetic background on mutant phenotype. Science 269:230–234PubMedCrossRefGoogle Scholar
  98. Tickle C (2004) The contribution of chicken embryology to the understanding of vertebrate limb development. Mech Dev 121:1019–1029PubMedCrossRefGoogle Scholar
  99. van Veen HA, Koiter J, Vogelezang CJ, van Wessel N, van Dam T, Velterop I, van Houdt K, Kupers L, Horbach D, Salaheddine M, Nuijens JH, Mannesse ML (2012) Characterization of recombinant human C1 inhibitor secreted in milk of transgenic rabbits. J Biotechnol 162:319–326PubMedCrossRefGoogle Scholar
  100. Vize PD (1988) Introduction of a porcine growth hormone fusion gene into transgenic pigs promotes growth. J Cell Sci 90:295–300PubMedGoogle Scholar
  101. Wall RJ, Powell AM, Paape MJ, Kerr DE, Bannerman DD, Pursel VG, Wells KD, Talbot N, Hawk HW (2005) Genetically enhanced cows resist intramammary Staphylococcus aureus infection. Nat Biotechnol 23:445–451PubMedCrossRefGoogle Scholar
  102. Wang K, Ouyang H, Xie Z, Yao C, Guo N, Li M, Jiao H, Pang D (2015a) Efficient generation of myostatin mutations in pigs using the CRISPR/Cas9 system. Sci Rep 5:16623PubMedPubMedCentralCrossRefGoogle Scholar
  103. Wang X, Yu H, Lei A, Zhou J, Zeng W, Zhu H, Dong Z, Niu Y, Shi B, Cai B, Liu J, Huang S, Yan H, Zhao X, Zhou G, He X, Chen X, Yang Y, Jiang Y, Shi L, Tian X, Wang Y, Ma B, Huang X, Qu L, Chen Y (2015b) Generation of gene-modified goats targeting MSTN and FGF5 via zygote injection of CRISPR/Cas9 system. Sci Rep 5:13878PubMedPubMedCentralCrossRefGoogle Scholar
  104. Wang X, Zhou J, Cao C, Huang J, Hai T, Wang Y, Zheng Q, Zhang H, Qin G, Miao X, Wang H, Cao S, Zhou Q, Zhao J (2015c) Efficient CRISPR/Cas9-mediated biallelic gene disruption and site-specific knockin after rapid selection of highly active sgRNAs in pigs. Sci Rep 5:13348PubMedPubMedCentralCrossRefGoogle Scholar
  105. Wang Y, Du Y, Shen B, Zhou X, Li J, Liu Y, Wang J, Zhou J, Hu B, Kang N, Gao J, Yu L, Huang X, Wei H (2015d) Efficient generation of gene-modified pigs via injection of zygote with Cas9/sgRNA. Sci Rep 5:8256PubMedPubMedCentralCrossRefGoogle Scholar
  106. Whitelaw CB, Sheets TP, Lillico SG, Telugu BP (2016) Engineering large animal models of human disease. J Pathol 238:247–256PubMedCrossRefGoogle Scholar
  107. Whitworth KM, Lee K, Benne JA, Beaton BP, Spate LD, Murphy SL, Samuel MS, Mao J, O’Gorman C, Walters EM, Murphy CN, Driver J, Mileham A, McLaren D, Wells KD, Prather RS (2014) Use of the CRISPR/Cas9 system to produce genetically engineered pigs from in vitro-derived oocytes and embryos. Biol Reprod 91:78PubMedPubMedCentralCrossRefGoogle Scholar
  108. Whitworth KM, Rowland RR, Ewen CL, Trible BR, Kerrigan MA, Cino-Ozuna AG, Samuel MS, Lightner JE, McLaren DG, Mileham AJ, Wells KD, Prather RS (2016) Gene-edited pigs are protected from porcine reproductive and respiratory syndrome virus. Nat Biotechnol 34:20–22PubMedCrossRefGoogle Scholar
  109. Whyte JJ, Prather RS (2011) Genetic modifications of pigs for medicine and agriculture. Mol Reprod Dev 78:879–891PubMedPubMedCentralCrossRefGoogle Scholar
  110. Wilke M, Buijs-Offerman RM, Aarbiou J, Colledge WH, Sheppard DN, Touqui L, Bot A, Jorna H, de Jonge HR, Scholte BJ (2011) Mouse models of cystic fibrosis: phenotypic analysis and research applications. J Cyst Fibros 10 Suppl 2, S152–171CrossRefGoogle Scholar
  111. Wilmut I, Schnieke AE, McWhir J, Kind AJ, Campbell KH (1997) Viable offspring derived from fetal and adult mammalian cells. Nature 385:810–813PubMedCrossRefGoogle Scholar
  112. Wright G, Carver A, Cottom D, Reeves D, Scott A, Simons P, Wilmut I, Garner I, Colman A (1991) High level expression of active human alpha-1-antitrypsin in the milk of transgenic sheep. Bio/Technology 9, 830–834PubMedGoogle Scholar
  113. Wu CL, Melton DW (1993) Production of a model for Lesch-Nyhan syndrome in hypoxanthine phosphoribosyltransferase-deficient mice. Nat Genet 3:235–240PubMedCrossRefGoogle Scholar
  114. Yin XJ, Lee HS, Lee YH, Seo YI, Jeon SJ, Choi EG, Cho SJ, Cho SG, Min W, Kang SK, Hwang WS, Kong IK (2005) Cats cloned from fetal and adult somatic cells by nuclear transfer. Reproduction 129:245–249PubMedCrossRefGoogle Scholar
  115. Yong Z, Yuqiang L (1998) Nuclear-cytoplasmic interaction and development of goat embryos reconstructed by nuclear transplantation: production of goats by serially cloning embryos. Biol Reprod 58:266–269PubMedCrossRefGoogle Scholar
  116. Yu G, Chen J, Yu H, Liu S, Chen J, Xu X, Sha H, Zhang X, Wu G, Xu S, Cheng G (2006) Functional disruption of the prion protein gene in cloned goats. J Gen Virol 87:1019–1027PubMedCrossRefGoogle Scholar
  117. Zhou X, Xin J, Fan N, Zou Q, Huang J, Ouyang Z, Zhao Y, Zhao B, Liu Z, Lai S, Yi X, Guo L, Esteban MA, Zeng Y, Yang H, Lai L (2015) Generation of CRISPR/Cas9-mediated gene-targeted pigs via somatic cell nuclear transfer. Cell Mol Life Sci 72:1175–1184PubMedCrossRefGoogle Scholar
  118. Zhou X, Wang L, Du Y, Xie F, Li L, Liu Y, Liu C, Wang S, Zhang S, Huang X, Wang Y, Wei H (2016) Efficient generation of gene-modified pigs harboring precise orthologous human mutation via CRISPR/Cas9-induced homology-directed repair in zygotes. Hum Mutat 37:110–118PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Bhanu P. Telugu
    • 1
    • 2
    • 3
  • Ki-Eun Park
    • 1
    • 2
    • 3
  • Chi-Hun Park
    • 1
    • 2
  1. 1.Animal and Avian ScienceUniversity of MarylandCollege ParkUSA
  2. 2.Animal Bioscience and Biotechnology LaboratoryARS, USDABeltsvilleUSA
  3. 3.RenOVAte Biosciences IncReisterstownUSA

Personalised recommendations