Advertisement

Mammalian Genome

, Volume 28, Issue 9–10, pp 407–415 | Cite as

Car8 dorsal root ganglion expression and genetic regulation of analgesic responses are associated with a cis-eQTL in mice

  • Roy C. Levitt
  • Gerald Y. Zhuang
  • Yuan Kang
  • Diana M. Erasso
  • Udita Upadhyay
  • Mehtap Ozdemir
  • Eugene S. Fu
  • Konstantinos D. Sarantopoulos
  • Shad B. Smith
  • William Maixner
  • Luda Diatchenko
  • Eden R. Martin
  • Tim Wiltshire
Article

Abstract

Carbonic anhydrase-8 (Car8 mouse gene symbol) is devoid of enzymatic activity, but instead functions as an allosteric inhibitor of inositol trisphosphate receptor-1 (ITPR1) to regulate this intracellular calcium release channel important in synaptic functions and neuronal excitability. Causative mutations in ITPR1 and carbonic anhydrase-8 in mice and humans are associated with certain subtypes of spinal cerebellar ataxia (SCA). SCA mice are genetically deficient in dorsal root ganglia (DRG) Car8 expression and display mechanical and thermal hypersensitivity and susceptibility to subacute and chronic inflammatory pain behaviors. In this report, we show that DRG Car8 expression is variable across 25 naïve-inbred strains of mice, and this cis-regulated eQTL (association between rs27660559, rs27706398, and rs27688767 and DRG Car8 expression; P < 1 × 10−11) is correlated with nociceptive responses in mice. Next, we hypothesized that increasing DRG Car8 gene expression would inhibit intracellular calcium release required for morphine antinociception and might correlate with antinociceptive sensitivity of morphine and perhaps other analgesic agents. We show that mean DRG Car8 gene expression is directly related to the dose of morphine or clonidine needed to provide a half-maximal analgesic response (r = 0.93, P < 0.00002; r = 0.83, P < 0.0008, respectively), suggesting that greater DRG Car8 expression increases analgesic requirements. Finally, we show that morphine induces intracellular free calcium release using Fura 2 calcium imaging in a dose-dependent manner; V5-Car8 WT overexpression in NBL cells inhibits morphine-induced calcium increase. These findings highlight the ‘morphine paradox’ whereby morphine provides antinociception by increasing intracellular free calcium, while Car8 and other antinociceptive agents work by decreasing intracellular free calcium. This is the first study demonstrating that biologic variability associated with this cis-eQTL may contribute to differing analgesic responses through altered regulation of ITPR1-dependent calcium release in mice.

Notes

Acknowledgements

We thank Drs. D. A. Lubarsky and K. Candiotti for their generous input and support. This work was funded by grants from the NIDCR R01 DE022903; the NIDA R031410; funding from Algynomics Inc. Chapel Hill, NC; and funding from the Department of Anesthesiology, Perioperative Medicine, and Pain Management, University of Miami Miller School of Medicine, Miami, Florida.

Authors’ contributions

TW designed and ran the DRG eQTL studies and data analyses. GYZ, YK, and MO ran the NBL studies on morphine response and Car8 antagonism. LD, WM, SBS, ESF, KDS, DME, GYZ, and UU assisted with manuscript preparation, provided critical scientific review, revisions, and editing. ERM contributed to data analyses, reviewed and revised the manuscript. RCL designed the overall study, supervised the studies, setup collaborations, analyzed data, and wrote the manuscript.

References

  1. Aoki T, Narita M, Ohnishi O, Mizuo K, Narita M, Yajima Y, Suzuki T (2003) Disruption of the type 1 inositol 1,4,5-trisphosphate receptor gene suppresses the morphine-induced antinociception in the mouse. Neurosci Lett 350:69–72CrossRefPubMedGoogle Scholar
  2. Grubb SC, Bult CJ, Bogue MA (2014) Mouse phenome database. Nucl Acids Res 42:D825–D834CrossRefPubMedGoogle Scholar
  3. Grynkiewicz G, Poenie M, Tsien RY (1985) A new generation of Ca2 + indicators with greatly improved fluorescence properties. J Biol Chem 260:3440–3450PubMedGoogle Scholar
  4. Hirasawa M, Xu X, Trask RB, Maddatu TP, Johnson BA, Naggert JK, Nishina PM, Ikeda A (2007) Carbonic anhydrase related protein 8 mutation results in aberrant synaptic morphology and excitatory synaptic function in the cerebellum. Mol Cell Neurosci 35:161–170CrossRefPubMedPubMedCentralGoogle Scholar
  5. Hirota J, Ando H, Hamada K, Mikoshiba K (2003) Carbonic anhydrase-related protein is a novel binding protein for inositol 1,4,5-trisphosphate receptor type 1. Biochem J 372:435–441CrossRefPubMedPubMedCentralGoogle Scholar
  6. Hucho TB, Dina OA, Kuhn J, Levine JD (2006) Estrogen controls PKCepsilon-dependent mechanical hyperalgesia through direct action on nociceptive neurons. Eur J Neurosci 24:527–534CrossRefPubMedGoogle Scholar
  7. Jiao Y, Yan J, Zhao Y, Donahue LR, Beamer WG, Li X, Roe BA, Ledoux MS, Gu W (2005) Carbonic anhydrase-related protein VIII deficiency is associated with a distinctive lifelong gait disorder in waddles mice. Genetics 171:1239–1246CrossRefPubMedPubMedCentralGoogle Scholar
  8. Kang HM, Zaitlen NA, Wade CM, Kirby A, Heckerman D, Daly MJ, Eskin E (2008) Efficient control of population structure in model organism association mapping. Genetics 178:1709–1723CrossRefPubMedPubMedCentralGoogle Scholar
  9. Komalavilas P, Lincoln TM (1994) Phosphorylation of the inositol 1,4,5-trisphosphate receptor by cyclic GMP-dependent protein kinase. J Biol Chem 269:8701–8707PubMedGoogle Scholar
  10. Kreydiyyeh SI, Usta J, Copti R (2000) Effect of cinnamon, clove and some of their constituents on the Na(+)-K(+)-ATPase activity and alanine absorption in the rat jejunum. Food Chem Toxicol 38:755–762CrossRefPubMedGoogle Scholar
  11. Liu NJ, Chakrabarti S, Schnell S, Wessendorf M, Gintzler AR (2011) Spinal synthesis of estrogen and concomitant signaling by membrane estrogen receptors regulate spinal κ- and μ-opioid receptor heterodimerization and female-specific spinal morphine antinociception. J Neurosci 31:11836–11845CrossRefPubMedPubMedCentralGoogle Scholar
  12. Luo C, Gangadharan V, Bali KK, Xie RG, Agarwal N, Kurejova M, Tappe-Theodor A, Tegeder I, Feil S, Lewin G, Polgar E, Todd AJ, Schlossmann J, Hofmann F, Liu DL, Hu SJ, Feil R, Kuner T, Kuner R (2012) Presynaptically localized cyclic GMP-dependent protein kinase 1 is a key determinant of spinal synaptic potentiation and pain hypersensitivity. PLoS Biol 10:e1001283CrossRefPubMedPubMedCentralGoogle Scholar
  13. Marelli C, van de Leemput J, Johnson JO, Tison F, Thauvin-Robinet C, Picard F, Tranchant C, Hernandez DG, Huttin B, Boulliat J, Sangla I, Marescaux C, Brique S, Dollfus H, Arepalli S, Benatru I, Ollagnon E, Forlani S, Hardy J, Stevanin G, Durr A, Singleton A, Brice A (2011) SCA15 due to large ITPR1 deletions in a cohort of 333 white families with dominant ataxia. Arch Neurol 68:637–643CrossRefPubMedPubMedCentralGoogle Scholar
  14. Mogil JS (2012) Sex differences in pain and pain inhibition: multiple explanations of a controversial phenomenon. Nat Rev Neurosci 13:859–866CrossRefPubMedGoogle Scholar
  15. Mogil JS, Wilson SG, Bon K, Lee SE, Chung K, Raber P, Pieper JO, Hain HS, Belknap JK, Hubert L, Elmer GI, Chung JM, Devor M (1999) Heritability of nociception I: responses of 11 inbred mouse strains on 12 measures of nociception. Pain 80:67–82CrossRefPubMedGoogle Scholar
  16. Neely GG, Rao S, Costigan M, Mair N, Racz I, Milinkeviciute G, Meixner A, Nayanala S, Griffin RS, Belfer I, Dai F, Smith S, Diatchenko L, Marengo S, Haubner BJ, Novatchkova M, Gibson D, Maixner W, Pospisilik JA, Hirsch E, Whishaw IQ, Zimmer A, Gupta V, Sasaki J, Kanaho Y, Sasaki T, Kress M, Woolf CJ, Penninger JM (2012) Construction of a global pain systems network highlights phospholipid signaling as a regulator of heat nociception. PLoS Genet 8:e1003071CrossRefPubMedPubMedCentralGoogle Scholar
  17. Schmitz-Hubsch T, Coudert M, Giunti P, Globas C, Baliko L, Fancellu R, Mariotti C, Filla A, Rakowicz M, Charles P, Ribai P, Szymanski S, Infante J, van de Warrenburg BP, Durr A, Timmann D, Boesch S, Rola R, Depondt C, Schols L, Zdzienicka E, Kang JS, Ratzka S, Kremer B, Schulz JB, Klopstock T, Melegh B, du Montcel ST, Klockgether T (2010) Self-rated health status in spinocerebellar ataxia–results from a European multicenter study. Mov Disord 25:587–595CrossRefPubMedGoogle Scholar
  18. Simonetti M, Hagenston AM, Vardeh D, Freitag HE, Mauceri D, Lu J, Satagopam VP, Schneider R, Costigan M, Bading H, Kuner R (2013) Nuclear calcium signaling in spinal neurons drives a genomic program required for persistent inflammatory pain. Neuron 77:43–57CrossRefPubMedPubMedCentralGoogle Scholar
  19. Sjoblom B, Elleby B, Wallgren K, Jonsson BH, Lindskog S (1996) Two point mutations convert a catalytically inactive carbonic anhydrase-related protein (CARP) to an active enzyme. FEBS Lett 398:322–325CrossRefPubMedGoogle Scholar
  20. Su AI, Wiltshire T, Batalov S, Lapp H, Ching KA, Block D, Zhang J, Soden R, Hayakawa M, Kreiman G, Cooke MP, Walker JR, Hogenesch JB (2004) A gene atlas of the mouse and human protein-encoding transcriptomes. Proc Natl Acad Sci USA 101:6062–6067CrossRefPubMedPubMedCentralGoogle Scholar
  21. Turkmen S, Guo G, Garshasbi M, Hoffmann K, Alshalah AJ, Mischung C, Kuss A, Humphrey N, Mundlos S, Robinson PN (2009) CA8 mutations cause a novel syndrome characterized by ataxia and mild mental retardation with predisposition to quadrupedal gait. PLoS Genet 5:e1000487CrossRefPubMedPubMedCentralGoogle Scholar
  22. Wagner LE 2nd, Li WH, Yule DI (2003) Phosphorylation of type-1 inositol 1,4,5-trisphosphate receptors by cyclic nucleotide-dependent protein kinases: a mutational analysis of the functionally important sites in the S2 + and S2- splice variants. J Biol Chem 278:45811–45817CrossRefPubMedGoogle Scholar
  23. Wilson SG, Smith SB, Chesler EJ, Melton KA, Haas JJ, Mitton B, Strasburg K, Hubert L, Rodriguez-Zas SL, Mogil JS (2003) The heritability of antinociception: common pharmacogenetic mediation of five neurochemically distinct analgesics. J Pharmacol Exp Ther 304:547–559CrossRefPubMedGoogle Scholar
  24. Wittkopp PJ, Kalay G (2012) Cis-regulatory elements: molecular mechanisms and evolutionary processes underlying divergence. Nat Rev Genet 13:59–69CrossRefGoogle Scholar
  25. Wu C, Delano DL, Mitro N, Su SV, Janes J, McClurg P, Batalov S, Welch GL, Zhang J, Orth AP, Walker JR, Glynne RJ, Cooke MP, Takahashi JS, Shimomura K, Kohsaka A, Bass J, Saez E, Wiltshire T, Su AI (2008a) Gene set enrichment in eQTL data identifies novel annotations and pathway regulators. PLoS Genet 4:e1000070CrossRefPubMedPubMedCentralGoogle Scholar
  26. Wu C, Delano DL, Mitro N, Su SV, Janes J, McClurg P, Batalov S, Welch GL, Zhang J, Orth AP, Walker JR, Glynne RJ, Cooke MP, Takahashi JS, Shimomura K, Kohsaka A, Bass J, Saez E, Wiltshire T, Su AI (2008b) Gene set enrichment in eQTL data identifies novel annotations and pathway regulators. PLoS Genet 4:e1000070CrossRefPubMedPubMedCentralGoogle Scholar
  27. Zhang S, Malmersjö S, Li J, Ando H, Aizman O, Uhlén P, Mikoshiba K, Aperia A (2006) Distinct role of the N-terminal tail of the Na, K-ATPase catalytic subunit as a signal transducer. J Biol Chem 281:21954–21962CrossRefPubMedGoogle Scholar
  28. Zhuang GZ, Keeler B, Grant J, Bianchi L, Fu ES, Zhang YP, Erasso DM, Cui JG, Wiltshire T, Li Q, Hao S, Sarantopoulos KD, Candiotti K, Wishnek SM, Smith SB, Maixner W, Diatchenko L, Martin ER, Levitt RC (2015) Carbonic anhydrase-8 regulates inflammatory pain by inhibiting the ITPR1-cytosolic free calcium pathway. PLoS ONE 10:e0118273CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Roy C. Levitt
    • 1
    • 2
    • 3
    • 4
  • Gerald Y. Zhuang
    • 1
  • Yuan Kang
    • 1
  • Diana M. Erasso
    • 1
  • Udita Upadhyay
    • 1
  • Mehtap Ozdemir
    • 1
  • Eugene S. Fu
    • 1
  • Konstantinos D. Sarantopoulos
    • 1
  • Shad B. Smith
    • 5
  • William Maixner
    • 5
  • Luda Diatchenko
    • 5
  • Eden R. Martin
    • 3
    • 4
  • Tim Wiltshire
    • 6
  1. 1.Department of Anesthesiology, Perioperative Medicine and Pain ManagementUniversity of Miami Miller School of MedicineMiamiUSA
  2. 2.Bruce W. Carter Miami Veterans Healthcare SystemMiamiUSA
  3. 3.John P. Hussman Institute for Human GenomicsUniversity of Miami Miller School of MedicineMiamiUSA
  4. 4.John T Macdonald Foundation Department of Human GeneticsUniversity of Miami Miller School of MedicineMiamiUSA
  5. 5.Algynomics Inc.Chapel HillUSA
  6. 6.Department of Pharmacology and Experimental Therapeutics, Eshelman School of PharmacyUniversity of North CarolinaChapel HillUSA

Personalised recommendations