Mammalian Genome

, Volume 28, Issue 5–6, pp 198–212 | Cite as

The human retinoblastoma susceptibility gene (RB1): an evolutionary story in primates

  • Maria C. Viana
  • William C. Tavares
  • Ayslan C. Brant
  • Mariana Boroni
  • Héctor N. SeuánezEmail author


The tumor suppressor gene RB1 (Human Retinoblastoma Susceptibility Gene) plays a prominent role in normal development, gene transcription, DNA replication, repair, and mitosis. Its complete biallelic dysfunction in retinoblasts is the main cause of retinoblastoma in the human. Although this gene has been evolutionary conserved, comparisons between the reference and human RB1 coding region with its counterparts in 19 non-human primates showed 359 sites where nucleotide replacements took place during the radiation of these species. These resulted in missense substitutions in 97 codons, 91 of which by amino acids with radically different physicochemical properties. Several in frame deletions and two insertions were also observed in the N-terminal region of the pRB protein where the highest number of amino acid substitutions and radical amino changes were found. Fifty-six codons were inferred to be under negative selection and five under positive selection. Differences in codon usage showed evident phylogenetic signals, with hominids generally presenting higher indices of codon bias than other catarrhines. The lineage leading to platyrrhines and, within platyrrhines, the lineage leading to Saimiri boliviensis showed a high rate of nucleotide substitutions and amino acids. Finally, several RB1 alterations associated to retinoblastoma in the human were present in several non-human primates without an apparent pathological effect.


Codon Usage Retinoblastoma Online Appendix Silent Mutation Amino Acid Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Work supported by Conselho Nacional de Desenvolvimento (Brazil), grant 303306/2010-6 and Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (BR) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (Award Number: 209101/E-44/2014).

Supplementary material

335_2017_9689_MOESM1_ESM.docx (14 kb)
Supplementary material 1 (DOCX 14 KB)
335_2017_9689_MOESM2_ESM.docx (13 kb)
Supplementary material 2 (DOCX 13 KB)
335_2017_9689_MOESM3_ESM.xls (1 mb)
Supplementary material 3 (XLS 1047 KB)
335_2017_9689_MOESM4_ESM.xlsx (17 kb)
Supplementary material 4 (XLSX 17 KB)
335_2017_9689_MOESM5_ESM.xlsx (53 kb)
Supplementary material 5 (XLSX 53 KB)
335_2017_9689_MOESM6_ESM.docx (155 kb)
Supplementary material 6 (DOCX 154 KB)


  1. Adams PD, Li X, Sellers WR et al (1999) Retinoblastoma protein contains a C-terminal motif that targets it for phosphorylation by cyclin-cdk complexes. Mol Cell Biol 19:1068–1080. doi: 10.1128/MCB.19.2.1068 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Blomberg SP, Garland T, Ives AR (2003) Testing for phylogenetic signal in comparative data: behavioral traits are more labile. Evolution 57:717–745. doi: 10.1111/j.0014-3820.2003.tb00285.x CrossRefPubMedGoogle Scholar
  3. Brown VD, Gallie BL (2002) The B-domain lysine patch of pRB Is required for binding to large T antigen and release of E2F by phosphorylation. Mol Cell Biol 22:1390–1401. doi: 10.1128/MCB.22.5.1390-1401.2002 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Castresana J (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 17:540–552. doi: 10.1093/oxfordjournals.molbev.a026334 CrossRefPubMedGoogle Scholar
  5. Chinnam M, Goodrich DW (2011) RB1, development, and cancer. Curr Top Dev Biol 94:129–169. doi: 10.1016/B978-0-12-380916-2.00005-X CrossRefPubMedPubMedCentralGoogle Scholar
  6. Delport W, Poon AFY, Frost SDW, Kosakovsky Pond SL (2010) Datamonkey 2010: a suite of phylogenetic analysis tools for evolutionary biology. Bioinformatics 26:2455–2457. doi: 10.1093/bioinformatics/btq429 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Dereeper A, Guignon V, Blanc G et al (2008) robust phylogenetic analysis for the non-specialist. Nucleic Acids Res 36:W465–W469. doi: 10.1093/nar/gkn180 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Drummond AJ, Suchard M a, Xie D, Rambaut A (2012) Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol Biol Evol 29:1969–1973. doi: 10.1093/molbev/mss075 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797. doi: 10.1093/nar/gkh340 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Finn RD, Coggill P, Eberhardt RY et al (2016) The Pfam protein families database: Towards a more sustainable future. Nucleic Acids Res 44:D279–D285. doi: 10.1093/nar/gkv1344 CrossRefPubMedGoogle Scholar
  11. Fokkema IFAC, Taschner PEM, Schaafsma GCP et al (2011) LOVD v.2.0: The next generation in gene variant databases. Hum Mutat 32:557–563. doi: 10.1002/humu.21438 CrossRefPubMedGoogle Scholar
  12. Goujon M, McWilliam H, Li W et al (2010) A new bioinformatics analysis tools framework at EMBL-EBI. Nucleic Acids Res 38:695–699. doi: 10.1093/nar/gkq313 CrossRefGoogle Scholar
  13. Guindon S, Dufayard JF, Lefort V, et al (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59:307–321. doi: 10.1093/sysbio/syq010 CrossRefPubMedGoogle Scholar
  14. Haas BJ, Papanicolaou A, Yassour M et al (2013) De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat Protoc 8:1494–1512. doi: 10.1038/nprot.2013.084 CrossRefPubMedGoogle Scholar
  15. Hasan MM, Brocca S, Sacco E, et al (2014) A comparative study of Whi5 and retinoblastoma proteins: from sequence and structure analysis to intracellular networks. Front Physiol 4:1–24. doi: 10.3389/fphys.2013.00315 CrossRefGoogle Scholar
  16. Hasegawa M, Kishino H, Yano T aki (1985) Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. J Mol Evol 22:160–174. doi: 10.1007/BF02101694 CrossRefPubMedGoogle Scholar
  17. Hong FD, Huang HJ, To H et al (1989) Structure of the human retinoblastoma gene. Proc Natl Acad Sci USA 86:5502–5506. doi: 10.1073/pnas.86.14.5502 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Illumina (2011) CASAVA v1.8.2 User Guide.Google Scholar
  19. Indovina P, Pentimalli F, Casini N et al (2015) RB1 dual role in proliferation and apoptosis: cell fate control and implications for cancer therapy. Oncotarget 6:17873–17890. doi: 10.18632/oncotarget.4286 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Jones DT, Taylor WR, Thornton JM (1992) The rapid generation of mutation data matrices from protein sequences. Bioinformatics 8:275–282. doi: 10.1093/bioinformatics/8.3.275 CrossRefGoogle Scholar
  21. Keane TM, Creevey CJ, Pentony MM et al (2006) Assessment of methods for amino acid matrix selection and their use on empirical data shows that ad hoc assumptions for choice of matrix are not justified. BMC Evol Biol 6:29. doi: 10.1186/1471-2148-6-29 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Knudson AG (1971) Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci USA 68:820–823. doi: 10.1073/pnas.68.4.820 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Kosakovsky Pond SL, Frost SD (2005) Not so different after all: a comparison of methods for detecting amino acid sites under selection. Mol Biol Evol 22:1208–1222Google Scholar
  24. Kosakovsky Pond SL, Murrell B, Fourment M et al (2011) A random effects branch-site model for detecting episodic diversifying selection. Mol Biol Evol 28:3033–3043. doi: 10.1093/molbev/msr125 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Li B, Fillmore N, Bai Y et al (2014) Evaluation of de novo transcriptome assemblies from RNA-Seq data. Genome Biol 15:553. doi: 10.1186/s13059-014-0553-5 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452. doi: 10.1093/bioinformatics/btp187 CrossRefPubMedGoogle Scholar
  27. McClellan DA, McCracken KG (2001) Estimating the Influence of selection on the variable amino acid sites of the Cytochrome b protein functional domains. Mol Biol Evol 18:917–925. doi: 10.1093/oxfordjournals.molbev.a003892 CrossRefPubMedGoogle Scholar
  28. Menezes AN, Viana MC, Furtado C et al (2013) Positive selection along the evolution of primate mitogenomes. Mitochondrion 13:846–851. doi: 10.1016/j.mito.2013.06.001 CrossRefPubMedGoogle Scholar
  29. Moll AC, Kuik DJ, Bouter LM et al (1997) Incidence and survival of retinoblastoma in The Netherlands: a register based study 1862–1995. Br J Ophthalmol 81:559–562. doi: 10.1136/bjo.81.7.559 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Murrell B, Wertheim JO, Moola S et al (2012) Detecting Individual Sites Subject to Episodic Diversifying Selection. PLoS Genet 8:e1002764. doi: 10.1371/journal.pgen.1002764 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Nichols R (2001) Gene trees and species trees are not the same. Trends Ecol Evol 16:358–364. doi: 10.1016/S0169-5347(01)02203-0 CrossRefPubMedGoogle Scholar
  32. Perelman P, Johnson WE, Roos C et al (2011) A molecular phylogeny of living primates. PLoS Genet 7:1–17. doi: 10.1371/journal.pgen.1001342 CrossRefGoogle Scholar
  33. Powell JR, Sezzi E, Moriyama EN et al (2003) Analysis of a shift in codon usage in Drosophila. J Mol Evol 57:214–225. doi: 10.1007/s00239-003-0030-3 CrossRefGoogle Scholar
  34. Resch AM, Carmel L, Marino-Ramirez L et al (2007) Widespread Positive Selection in Synonymous Sites of Mammalian Genes. Mol Biol Evol 24:1821–1831. doi: 10.1093/molbev/msm100 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Revell LJ (2012) Phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol Evol 3:217–223. doi: 10.1111/j.2041-210X.2011.00169.x CrossRefGoogle Scholar
  36. Rice P, Longden I, Bleasby A (2000) EMBOSS: The European Molecular Biology Open Software Suite. Trends Genet 16:276–277. doi: 10.1016/j.cocis.2008.07.002 CrossRefPubMedGoogle Scholar
  37. Rubin SM, Gall AL, Zheng N, Pavletich NP (2005) Structure of the Rb C-terminal domain bound to E2F1-DP1: a mechanism for phosphorylation-induced E2F release. Cell 123:1093–1106. doi: 10.1016/j.cell.2005.09.044 CrossRefPubMedGoogle Scholar
  38. Scheffler K, Martin DP, Seoighe C (2006) Robust inference of positive selection from recombining coding sequences. Bioinformatics 22:2493–2499. doi: 10.1093/bioinformatics/btl427 CrossRefPubMedGoogle Scholar
  39. Schmieder R, Edwards R (2011) Quality control and preprocessing of metagenomic datasets. Bioinformatics 27:863–864. doi: 10.1093/bioinformatics/btr026 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Seregard S, Lundell G, Svedberg H, Kivelä T (2004) Incidence of retinoblastoma from 1958 to 1998 in Northern Europe: advantages of birth cohort analysis. Ophthalmology 111:1228–1232. doi: 10.1016/j.ophtha.2003.10.023 CrossRefPubMedGoogle Scholar
  41. Simão FA, Waterhouse RM, Ioannidis P et al (2015) BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31:3210–3212. doi: 10.1093/bioinformatics/btv351 CrossRefPubMedGoogle Scholar
  42. Sivakumaran TA, Shen P, Wall DP et al (2005) Conservation of the RB1 gene in human and primates. Hum Mutat 25:396–409. doi: 10.1002/humu.20154 CrossRefPubMedGoogle Scholar
  43. Stelzer G, Rosen N, Plaschkes I, et al (2016) The GeneCards Suite: From Gene Data Mining to Disease Genome Sequence Analyses. Curr Protoc Bioinform 54:1.30.1–1.30.33. doi: 10.1002/cpbi.5 CrossRefGoogle Scholar
  44. Tamrakar S (2000) Role of pRB dephosphorylation in cell cycle regulation. Front Biosci 5:d121. doi: 10.2741/Tamrakar CrossRefPubMedGoogle Scholar
  45. Tamura K, Stecher G, Peterson D et al (2013) MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol 30:2725–2759. doi: 10.1093/molbev/mst197 CrossRefPubMedPubMedCentralGoogle Scholar
  46. The UniProt Consortium (2015) UniProt: a hub for protein information. Nucleic Acids Res 43:D204–D212. doi: 10.1093/nar/gku989 CrossRefGoogle Scholar
  47. Toguchida J, McGee TL, Paterson JC et al (1993) Complete genomic sequence of the human retinoblastoma susceptibility gene. Genomics 17:535–543. doi: 10.1006/geno.1993.1368 CrossRefPubMedGoogle Scholar
  48. Verma RS, Ramesh KH, Samonte RV, Conte RA (1996) Mapping the homolog of the human Rb1 gene to Chromosome 14 of higher primates. Mamm Genome 7:591–592. doi: 10.1007/s003359900175 CrossRefPubMedGoogle Scholar
  49. Woolley S, Johnson J, Smith MJ et al (2003) TreeSAAP: selection on amino acid properties using phylogenetic trees. Bioinformatics 19:671–672. doi: 10.1093/bioinformatics/btg043 CrossRefPubMedGoogle Scholar
  50. Xia X (2001) DAMBE: software package for data analysis in molecular biology and evolution. J Hered 92:371–373. doi: 10.1093/jhered/92.4.371 CrossRefPubMedGoogle Scholar
  51. Xiao B, Spencer J, Clements A et al (2003) Crystal structure of the retinoblastoma tumor suppressor protein bound to E2F and the molecular basis of its regulation. Proc Natl Acad Sci USA 100:2363–2368. doi: 10.1073/pnas.0436813100 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Maria C. Viana
    • 1
  • William C. Tavares
    • 1
    • 2
  • Ayslan C. Brant
    • 1
    • 2
  • Mariana Boroni
    • 3
  • Héctor N. Seuánez
    • 1
    • 2
    Email author
  1. 1.Genetics ProgramInstituto Nacional de CâncerRio de JaneiroBrazil
  2. 2.Department of GeneticsUniversidade Federal do Rio de Janeiro. Cidade UniversitáriaRio de JaneiroBrazil
  3. 3.Bioinformatics UnitInstituto Nacional de CâncerRio de JaneiroBrazil

Personalised recommendations