Mammalian Genome

, Volume 28, Issue 7–8, pp 262–274 | Cite as

Control of gene editing by manipulation of DNA repair mechanisms

  • Eric Danner
  • Sanum Bashir
  • Saniye Yumlu
  • Wolfgang Wurst
  • Benedikt Wefers
  • Ralf Kühn


DNA double-strand breaks (DSBs) are produced intentionally by RNA-guided nucleases to achieve genome editing through DSB repair. These breaks are repaired by one of two main repair pathways, classic non-homologous end joining (c-NHEJ) and homology-directed repair (HDR), the latter being restricted to the S/G2 phases of the cell cycle and notably less frequent. Precise genome editing applications rely on HDR, with the abundant c-NHEJ formed mutations presenting a barrier to achieving high rates of precise sequence modifications. Here, we give an overview of HDR- and c-NHEJ-mediated DSB repair in gene editing and summarize the current efforts to promote HDR over c-NHEJ.


Homologous Recombination U2OS Cell Gene Editing Homologous Recombination Pathway Repair Template 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Funding was provided by BMBF (Grant No: VIP 03V0261).


  1. Aida T, Nakade S, Sakuma T et al (2016) Gene cassette knock-in in mammalian cells and zygotes by enhanced MMEJ. BMC Genomics 17:979. doi: 10.1186/s12864-016-3331-9 PubMedPubMedCentralCrossRefGoogle Scholar
  2. Alt FW, Zhang Y, Meng F-L et al (2013) Mechanisms of programmed DNA lesions and genomic instability in the immune system. Cell 152:417–429. doi: 10.1016/j.cell.2013.01.007 PubMedPubMedCentralCrossRefGoogle Scholar
  3. Arras SDM, Fraser JA (2016) Chemical inhibitors of non-homologous end joining increase targeted construct integration in Cryptococcus neoformans. PloS ONE 11:e0163049. doi: 10.1371/journal.pone.0163049 PubMedPubMedCentralCrossRefGoogle Scholar
  4. Barrangou R, Doudna JA (2016) Applications of CRISPR technologies in research and beyond. Nat Biotechnol 34:933–941. doi: 10.1038/nbt.3659 PubMedCrossRefGoogle Scholar
  5. Baudat F, Imai Y, de Massy B (2013) Meiotic recombination in mammals: localization and regulation. Nat Rev Genet 14:794–806. doi: 10.1038/nrg3573 PubMedCrossRefGoogle Scholar
  6. Bétermier M, Bertrand P, Lopez BS (2014) Is non-homologous end-joining really an inherently error-prone process? PLoS Genet 10:e1004086. doi: 10.1371/journal.pgen.1004086 PubMedPubMedCentralCrossRefGoogle Scholar
  7. Boch J (2011) TALEs of genome targeting. Nat Biotechnol 29:135–136. doi: 10.1038/nbt.1767 PubMedCrossRefGoogle Scholar
  8. Boel A, Steyaert W, De Rocker N, et al (2016) BATCH-GE: batch analysis of next-generation sequencing data for genome editing assessment. Sci Rep 6:30330. doi: 10.1038/srep30330 PubMedPubMedCentralCrossRefGoogle Scholar
  9. Brinkman EK, Chen T, Amendola M, van Steensel B (2014) Easy quantitative assessment of genome editing by sequence trace decomposition. Nucleic Acids Res 42:e168. doi: 10.1093/nar/gku936 PubMedPubMedCentralCrossRefGoogle Scholar
  10. Bunting SF, Callén E, Wong N et al (2010) 53BP1 inhibits homologous recombination in Brca1-deficient cells by blocking resection of DNA breaks. Cell 141:243–254. doi: 10.1016/j.cell.2010.03.012 PubMedPubMedCentralCrossRefGoogle Scholar
  11. Byrum J, Jordan S, Safrany ST, Rodgers W (2004) Visualization of inositol phosphate-dependent mobility of Ku: depletion of the DNA-PK cofactor InsP6 inhibits Ku mobility. Nucleic Acids Res 32:2776–2784. doi: 10.1093/nar/gkh592 PubMedPubMedCentralCrossRefGoogle Scholar
  12. Canny MD, Wan L, Fradet-Turcotte A, et al (2016) A genetically encoded inhibitor of 53BP1 to stimulate homology-based gene editing. Biorxiv doi: 10.1101/060954 Google Scholar
  13. Certo MT, Ryu BY, Annis JE et al (2011) Tracking genome engineering outcome at individual DNA breakpoints. Nat Methods 8:671–676. doi: 10.1038/nmeth0.1648 PubMedPubMedCentralCrossRefGoogle Scholar
  14. Chu VT, Weber T, Wefers B et al (2015) Increasing the efficiency of homology-directed repair for CRISPR-Cas9-induced precise gene editing in mammalian cells. Nat Biotechnol 33:543–548. doi: 10.1038/nbt.3198 PubMedCrossRefGoogle Scholar
  15. Cong L, Ran FA, Cox D et al (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–823. doi: 10.1126/science.1231143 PubMedPubMedCentralCrossRefGoogle Scholar
  16. Corneo B, Wendland RL, Deriano L et al (2007) Rag mutations reveal robust alternative end joining. Nature 449:483–486. doi: 10.1038/nature06168 PubMedCrossRefGoogle Scholar
  17. Cox DBT, Platt RJ, Zhang F (2015) Therapeutic genome editing: prospects and challenges. Nat Med 21:121–131. doi: 10.1038/nm.3793 PubMedPubMedCentralCrossRefGoogle Scholar
  18. Daley JM, Sung P (2014) 53BP1, BRCA1, and the choice between recombination and end joining at DNA double-strand breaks. Mol Cell Biol 34:1380–1388. doi: 10.1128/MCB.01639-13 PubMedPubMedCentralCrossRefGoogle Scholar
  19. Davis L, Maizels N (2011) DNA nicks promote efficient and safe targeted gene correction. PloS ONE 6:e23981. doi: 10.1371/journal.pone.0023981 PubMedPubMedCentralCrossRefGoogle Scholar
  20. Davis L, Maizels N (2014) Homology-directed repair of DNA nicks via pathways distinct from canonical double-strand break repair. Proc Natl Acad Sci USA 111:E924–E932. doi: 10.1073/pnas.1400236111 PubMedPubMedCentralCrossRefGoogle Scholar
  21. Davis L, Maizels N (2016) Two distinct pathways support gene correction by single-stranded donors at DNA nicks. Cell Rep 17:1872–1881. doi: 10.1016/j.celrep.2016.10.049 PubMedPubMedCentralCrossRefGoogle Scholar
  22. Dehairs J, Talebi A, Cherifi Y, Swinnen JV (2016) CRISP-ID: decoding CRISPR mediated indels by Sanger sequencing. Sci Rep 6:28973. doi: 10.1038/srep28973 PubMedPubMedCentralCrossRefGoogle Scholar
  23. Deriano L, Roth DB (2013) Modernizing the nonhomologous end-joining repertoire: alternative and classical NHEJ share the stage. Annu Rev Genet 47:433–455. doi: 10.1146/annurev-genet-110711-155540 PubMedCrossRefGoogle Scholar
  24. Dever DP, Bak RO, Reinisch A et al (2016) CRISPR/Cas9 β-globin gene targeting in human haematopoietic stem cells. Nature 539:384–389. doi: 10.1038/nature20134 PubMedCrossRefGoogle Scholar
  25. Escribano-Díaz C, Orthwein A, Fradet-Turcotte A et al (2013) A cell cycle-dependent regulatory circuit composed of 53BP1-RIF1 and BRCA1-CtIP controls DNA repair pathway choice. Mol Cell 49:872–883. doi: 10.1016/j.molcel.2013.01.001 PubMedCrossRefGoogle Scholar
  26. Fradet-Turcotte A, Canny MD, Escribano-Díaz C et al (2013) 53BP1 is a reader of the DNA-damage-induced H2A Lys 15 ubiquitin mark. Nature 499:50–54. doi: 10.1038/nature12318 PubMedPubMedCentralCrossRefGoogle Scholar
  27. Giunta S, Belotserkovskaya R, Jackson SP (2010) DNA damage signaling in response to double-strand breaks during mitosis. J Cell Biol 190:197–207. doi: 10.1083/jcb.200911156 PubMedPubMedCentralCrossRefGoogle Scholar
  28. Glaser A, McColl B, Vadolas J (2016) GFP to BFP conversion: a versatile assay for the quantification of CRISPR/Cas9-mediated genome editing. Mol Ther Nucleic Acids 5:e334. doi: 10.1038/mtna.2016.48 PubMedPubMedCentralCrossRefGoogle Scholar
  29. Greco GE, Matsumoto Y, Brooks RC et al (2016) SCR7 is neither a selective nor a potent inhibitor of human DNA ligase IV. DNA Repair (Amst) 43:18–23. doi: 10.1016/j.dnarep.2016.04.004 CrossRefGoogle Scholar
  30. Gutschner T, Haemmerle M, Genovese G, et al (2016) Post-translational regulation of Cas9 during G1 enhances homology-directed repair. Cell Rep 14:1555–1566. doi: 10.1016/j.celrep.2016.01.019 PubMedCrossRefGoogle Scholar
  31. Haeussler M, Schönig K, Eckert H et al (2016) Evaluation of off-target and on-target scoring algorithms and integration into the guide RNA selection tool CRISPOR. Genome Biol 17:148. doi: 10.1186/s13059-016-1012-2 PubMedPubMedCentralCrossRefGoogle Scholar
  32. Hasty P, Abuin A, Bradley A (2000) Gene targeting, principles, and practice in mammalian cells. In: Gene targeting: a practical approach. Oxford University Press, Oxford, pp 1–35Google Scholar
  33. He X, Tan C, Wang F et al (2016) Knock-in of large reporter genes in human cells via CRISPR/Cas9-induced homology-dependent and independent DNA repair. Nucleic Acids Res 44:e85. doi: 10.1093/nar/gkw064 PubMedPubMedCentralCrossRefGoogle Scholar
  34. Heyer W-D, Ehmsen KT, Liu J (2010) Regulation of homologous recombination in eukaryotes. Annu Rev Genet 44:113–139. doi: 10.1146/annurev-genet-051710-150955 PubMedPubMedCentralCrossRefGoogle Scholar
  35. Hisano Y, Sakuma T, Nakade S, et al (2015) Precise in-frame integration of exogenous DNA mediated by CRISPR/Cas9 system in zebrafish. Sci Rep 5:8841. doi: 10.1038/srep08841 PubMedPubMedCentralCrossRefGoogle Scholar
  36. Howden SE, McColl B, Glaser A, et al (2016) A Cas9 variant for efficient generation of indel-free knockin or gene-corrected human pluripotent stem cells. Stem Cell Rep 7:508–517. doi: 10.1016/j.stemcr.2016.07.001 CrossRefGoogle Scholar
  37. Hsu PD, Lander ES, Zhang F (2014) Development and applications of CRISPR-Cas9 for genome engineering. Cell 157:1262–1278. doi: 10.1016/j.cell.2014.05.010 PubMedPubMedCentralCrossRefGoogle Scholar
  38. Hustedt N, Durocher D (2016) The control of DNA repair by the cell cycle. Nat Cell Biol 19:1–9. doi: 10.1038/ncb3452 PubMedCrossRefGoogle Scholar
  39. Jackson SP, Bartek J (2009) The DNA-damage response in human biology and disease. Nature 461:1071–1078. doi: 10.1038/nature08467 PubMedPubMedCentralCrossRefGoogle Scholar
  40. Jasin M, Rothstein R (2013) Repair of strand breaks by homologous recombination. Cold Spring Harb Perspect Biol 5:a012740. doi: 10.1101/cshperspect.a012740 PubMedPubMedCentralCrossRefGoogle Scholar
  41. Jayathilaka K, Sheridan SD, Bold TD et al (2008) A chemical compound that stimulates the human homologous recombination protein RAD51. Proc Natl Acad Sci USA 105:15848–15853. doi: 10.1073/pnas.0808046105 PubMedPubMedCentralCrossRefGoogle Scholar
  42. Jinek M, Chylinski K, Fonfara I et al (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821. doi: 10.1126/science.1225829 PubMedCrossRefGoogle Scholar
  43. Kim E, Kim S, Kim DH et al (2012) Precision genome engineering with programmable DNA-nicking enzymes. Genome Res 22:1327–1333. doi: 10.1101/gr.138792.112 PubMedPubMedCentralCrossRefGoogle Scholar
  44. Kim D, Kim S, Kim S et al (2016) Genome-wide target specificities of CRISPR-Cas9 nucleases revealed by multiplex Digenome-sEq. Genome Res 26:406–415. doi: 10.1101/gr.199588.115 PubMedPubMedCentralCrossRefGoogle Scholar
  45. Komor AC, Badran AH, Liu DR (2016) CRISPR-based technologies for the manipulation of eukaryotic genomes. Cell. doi: 10.1016/j.cell.2016.10.044 PubMedGoogle Scholar
  46. Kühn R, Chu VT (2015) Pop in, pop out: a novel gene-targeting strategy for use with CRISPR-Cas9. Genome Biol 16:244. doi: 10.1186/s13059-015-0810-2 PubMedPubMedCentralCrossRefGoogle Scholar
  47. Lavin MF, Kozlov S, Gatei M, Kijas AW (2015) ATM-dependent phosphorylation of all three members of the MRN complex: from sensor to adaptor. Biomolecules 5:2877–2902. doi: 10.3390/biom5042877 PubMedPubMedCentralCrossRefGoogle Scholar
  48. Liang X, Potter J, Kumar S et al (2017) Enhanced CRISPR/Cas9-mediated precise genome editing by improved design and delivery of gRNA, Cas9 nuclease, and donor DNA. J Biotechnol 241:136–146. doi: 10.1016/j.jbiotec.2016.11.011 PubMedCrossRefGoogle Scholar
  49. Lieber MR (2010) The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu Rev Biochem 79:181–211. doi: 10.1146/annurev.biochem.052308.093131 PubMedPubMedCentralCrossRefGoogle Scholar
  50. Lin S, Staahl BT, Alla RK, Doudna JA (2014) Enhanced homology-directed human genome engineering by controlled timing of CRISPR/Cas9 delivery. Elife 3:e04766. doi: 10.7554/eLife.04766 PubMedPubMedCentralGoogle Scholar
  51. Lindsay H, Burger A, Biyong B et al (2016) CrispRVariants charts the mutation spectrum of genome engineering experiments. Nat Biotechnol 34:701–702. doi: 10.1038/nbt.3628 PubMedCrossRefGoogle Scholar
  52. Liu J, Ehmsen KT, Heyer W-D, Morrical SW (2011) Presynaptic filament dynamics in homologous recombination and DNA repair. Crit Rev Biochem Mol Biol 46:240–270. doi: 10.3109/10409238.2011.576007 PubMedPubMedCentralCrossRefGoogle Scholar
  53. Long C, Amoasii L, Mireault AA et al (2016) Postnatal genome editing partially restores dystrophin expression in a mouse model of muscular dystrophy. Science 351:400–403. doi: 10.1126/science.aad5725 PubMedCrossRefGoogle Scholar
  54. Maeder ML, Gersbach CA (2016) Genome-editing technologies for gene and cell therapy. Mol Ther 24:430–446. doi: 10.1038/mt.2016.10 PubMedPubMedCentralCrossRefGoogle Scholar
  55. Mali P, Yang L, Esvelt KM et al (2013) RNA-guided human genome engineering via Cas9. Science 339:823–826. doi: 10.1126/science.1232033 PubMedPubMedCentralCrossRefGoogle Scholar
  56. Maruyama T, Dougan SK, Truttmann MC et al (2015) Increasing the efficiency of precise genome editing with CRISPR-Cas9 by inhibition of nonhomologous end joining. Nat Biotechnol 33:538–542. doi: 10.1038/nbt.3190 PubMedPubMedCentralCrossRefGoogle Scholar
  57. Mattiroli F, Vissers JHA, van Dijk WJ et al (2012) RNF168 ubiquitinates K13-15 on H2A/H2AX to drive DNA damage signaling. Cell 150:1182–1195. doi: 10.1016/j.cell.2012.08.005 PubMedCrossRefGoogle Scholar
  58. Menchon G, Bombarde O, Trivedi M, et al (2016) Structure-Based Virtual Ligand Screening on the XRCC4/DNA Ligase IV Interface. Sci Rep 6:22878. doi: 10.1038/srep22878 PubMedPubMedCentralCrossRefGoogle Scholar
  59. Miyaoka Y, Berman JR, Cooper SB, et al (2016) Systematic quantification of HDR and NHEJ reveals effects of locus, nuclease, and cell type on genome-editing. Sci Rep 6:23549. doi: 10.1038/srep23549 PubMedPubMedCentralCrossRefGoogle Scholar
  60. Mladenov E, Magin S, Soni A, Iliakis G (2016) DNA double-strand-break repair in higher eukaryotes and its role in genomic instability and cancer: cell cycle and proliferation-dependent regulation. Semin Cancer Biol 37–38:51–64. doi: 10.1016/j.semcancer.2016.03.003 PubMedCrossRefGoogle Scholar
  61. Nakade S, Tsubota T, Sakane Y et al (2014) Microhomology-mediated end-joining-dependent integration of donor DNA in cells and animals using TALENs and CRISPR/Cas9. Nat Commun 5:5560. doi: 10.1038/ncomms6560 PubMedPubMedCentralCrossRefGoogle Scholar
  62. Nakamura AJ, Rao VA, Pommier Y, Bonner WM (2010) The complexity of phosphorylated H2AX foci formation and DNA repair assembly at DNA double-strand breaks. Cell Cycle 9:389–397. doi: 10.4161/cc.9.2.10475 PubMedPubMedCentralCrossRefGoogle Scholar
  63. Nelson CE, Hakim CH, Ousterout DG et al (2016) In vivo genome editing improves muscle function in a mouse model of Duchenne muscular dystrophy. Science 351:403–407. doi: 10.1126/science.aad5143 PubMedCrossRefGoogle Scholar
  64. Orthwein A, Fradet-Turcotte A, Noordermeer SM et al (2014) Mitosis inhibits DNA double-strand break repair to guard against telomere fusions. Science 344:189–193. doi: 10.1126/science.1248024 PubMedCrossRefGoogle Scholar
  65. Orthwein A, Noordermeer SM, Wilson MD et al (2015) A mechanism for the suppression of homologous recombination in G1 cells. Nature 528:422–426. doi: 10.1038/nature16142 PubMedPubMedCentralCrossRefGoogle Scholar
  66. Panier S, Durocher D (2013) Push back to respond better: regulatory inhibition of the DNA double-strand break response. Nat Rev Mol Cell Biol 14:661–672. doi: 10.1038/nrm3659 PubMedCrossRefGoogle Scholar
  67. Paquet D, Kwart D, Chen A et al (2016) Efficient introduction of specific homozygous and heterozygous mutations using CRISPR/Cas9. Nature 533:125–129. doi: 10.1038/nature17664 PubMedCrossRefGoogle Scholar
  68. Pinder J, Salsman J, Dellaire G (2015) Nuclear domain “knock-in” screen for the evaluation and identification of small molecule enhancers of CRISPR-based genome editing. Nucleic Acids Res 43:9379–9392. doi: 10.1093/nar/gkv993 PubMedPubMedCentralCrossRefGoogle Scholar
  69. Pinello L, Canver MC, Hoban MD et al (2016) Analyzing CRISPR genome-editing experiments with CRISPResso. Nat Biotechnol 34:695–697. doi: 10.1038/nbt.3583 PubMedPubMedCentralCrossRefGoogle Scholar
  70. Ran FA, Hsu PD, Wright J et al (2013) Genome engineering using the CRISPR-Cas9 system. Nat Protoc 8:2281–2308. doi: 10.1038/nprot.2013.143 PubMedPubMedCentralCrossRefGoogle Scholar
  71. Ren J, Liu X, Fang C et al (2016) Multiplex genome editing to generate universal CAR T cells resistant to PD1 inhibition. Clin Cancer Res Off J Am Assoc. Cancer Res. doi: 10.1158/1078-0432.CCR-16-1300 PubMedCentralGoogle Scholar
  72. Renaud J-B, Boix C, Charpentier M, et al (2016) Improved genome editing efficiency and flexibility using modified oligonucleotides with TALEN and CRISPR-Cas9 nucleases. Cell Rep 14:2263–2272. doi: 10.1016/j.celrep.2016.02.018 PubMedCrossRefGoogle Scholar
  73. Richardson CD, Ray GJ, DeWitt MA et al (2016) Enhancing homology-directed genome editing by catalytically active and inactive CRISPR-Cas9 using asymmetric donor DNA. Nat Biotechnol 34:339–344. doi: 10.1038/nbt.3481 PubMedCrossRefGoogle Scholar
  74. Robert F, Barbeau M, Éthier S, et al (2015) Pharmacological inhibition of DNA-PK stimulates Cas9-mediated genome editing. Genome Med 7:93. doi: 10.1186/s13073-015-0215-6 PubMedPubMedCentralCrossRefGoogle Scholar
  75. Rodgers K, McVey M (2016) Error-prone repair of DNA double-strand breaks. J Cell Physiol 231:15–24. doi: 10.1002/jcp.25053 PubMedPubMedCentralCrossRefGoogle Scholar
  76. Sakuma T, Nakade S, Sakane Y et al (2016) MMEJ-assisted gene knock-in using TALENs and CRISPR-Cas9 with the PITCh systems. Nat Protoc 11:118–133. doi: 10.1038/nprot.2015.140 PubMedCrossRefGoogle Scholar
  77. San Filippo J, Sung P, Klein H (2008) Mechanism of eukaryotic homologous recombination. Annu Rev Biochem 77:229–257. doi: 10.1146/annurev.biochem.77.061306.125255 PubMedCrossRefGoogle Scholar
  78. Sartori AA, Lukas C, Coates J et al (2007) Human CtIP promotes DNA end resection. Nature 450:509–514. doi: 10.1038/nature06337 PubMedPubMedCentralCrossRefGoogle Scholar
  79. Schmid-Burgk JL, Schmidt T, Gaidt MM et al (2014) OutKnocker: a web tool for rapid and simple genotyping of designer nuclease edited cell lines. Genome Res 24:1719–1723. doi: 10.1101/gr.176701.114 PubMedPubMedCentralCrossRefGoogle Scholar
  80. Schwertman P, Bekker-Jensen S, Mailand N (2016) Regulation of DNA double-strand break repair by ubiquitin and ubiquitin-like modifiers. Nat Rev Mol Cell Biol 17:379–394. doi: 10.1038/nrm.2016.58 PubMedCrossRefGoogle Scholar
  81. Sfeir A, Symington LS (2015) Microhomology-mediated end joining: a back-up survival mechanism or dedicated pathway? Trends Biochem Sci 40:701–714. doi: 10.1016/j.tibs.2015.08.006 PubMedPubMedCentralCrossRefGoogle Scholar
  82. Smeenk G, Mailand N (2016) Writers, readers, and erasers of histone ubiquitylation in DNA double-strand break repair. Front Genet 7:122. doi: 10.3389/fgene.2016.00122 PubMedPubMedCentralCrossRefGoogle Scholar
  83. Song J, Yang D, Xu J et al (2016) RS-1 enhances CRISPR/Cas9- and TALEN-mediated knock-in efficiency. Nat Commun 7:10548. doi: 10.1038/ncomms10548 PubMedPubMedCentralCrossRefGoogle Scholar
  84. Srivastava M, Nambiar M, Sharma S et al (2012) An inhibitor of nonhomologous end-joining abrogates double-strand break repair and impedes cancer progression. Cell 151:1474–1487. doi: 10.1016/j.cell.2012.11.054 PubMedCrossRefGoogle Scholar
  85. Stracker TH, Petrini JHJ (2011) The MRE11 complex: starting from the ends. Nat Rev Mol Cell Biol 12:90–103. doi: 10.1038/nrm3047 PubMedPubMedCentralCrossRefGoogle Scholar
  86. Stucki M, Clapperton JA, Mohammad D et al (2005) MDC1 directly binds phosphorylated histone H2AX to regulate cellular responses to DNA double-strand breaks. Cell 123:1213–1226. doi: 10.1016/j.cell.2005.09.038 PubMedCrossRefGoogle Scholar
  87. Suzuki K, Tsunekawa Y, Hernandez-Benitez R et al (2016) In vivo genome editing via CRISPR/Cas9 mediated homology-independent targeted integration. Nature 540:144–149. doi: 10.1038/nature20565 PubMedPubMedCentralCrossRefGoogle Scholar
  88. Symington LS (2016) Mechanism and regulation of DNA end resection in eukaryotes. Crit Rev Biochem Mol Biol 51:195–212. doi: 10.3109/10409238.2016.1172552 PubMedPubMedCentralCrossRefGoogle Scholar
  89. Symington LS, Gautier J (2011) Double-strand break end resection and repair pathway choice. Annu Rev Genet 45:247–271. doi: 10.1146/annurev-genet-110410-132435 PubMedCrossRefGoogle Scholar
  90. Tang J, Cho NW, Cui G et al (2013) Acetylation limits 53BP1 association with damaged chromatin to promote homologous recombination. Nat Struct Mol Biol 20:317–325. doi: 10.1038/nsmb.2499 PubMedPubMedCentralCrossRefGoogle Scholar
  91. Thorslund T, Ripplinger A, Hoffmann S et al (2015) Histone H1 couples initiation and amplification of ubiquitin signalling after DNA damage. Nature 527:389–393. doi: 10.1038/nature15401 PubMedCrossRefGoogle Scholar
  92. Tsai SQ, Joung JK (2016) Defining and improving the genome-wide specificities of CRISPR-Cas9 nucleases. Nat Rev Genet 17:300–312. doi: 10.1038/nrg.2016.28 PubMedCrossRefGoogle Scholar
  93. Urnov FD, Rebar EJ, Holmes MC et al (2010) Genome editing with engineered zinc finger nucleases. Nat Rev Genet 11:636–646. doi: 10.1038/nrg2842 PubMedCrossRefGoogle Scholar
  94. Wang J, Friedman G, Doyon Y et al (2012) Targeted gene addition to a predetermined site in the human genome using a ZFN-based nicking enzyme. Genome Res 22:1316–1326. doi: 10.1101/gr.122879.111 PubMedPubMedCentralCrossRefGoogle Scholar
  95. Waters CA, Strande NT, Wyatt DW et al (2014) Nonhomologous end joining: a good solution for bad ends. DNA Repair (Amst) 17:39–51. doi: 10.1016/j.dnarep.2014.02.008 CrossRefGoogle Scholar
  96. Wyvekens N, Tsai SQ, Joung JK (2015) Genome editing in human cells using CRISPR/Cas nucleases. Curr Protoc Mol Biol 112:31.3.1–18. doi: 10.1002/0471142727.mb3103s112 Google Scholar
  97. Xi L, Schmidt JC, Zaug AJ et al (2015) A novel two-step genome editing strategy with CRISPR-Cas9 provides new insights into telomerase action and TERT gene expression. Genome Biol 16:231. doi: 10.1186/s13059-015-0791-1 PubMedPubMedCentralCrossRefGoogle Scholar
  98. Xie A, Hartlerode A, Stucki M et al (2007) Distinct roles of chromatin-associated proteins MDC1 and 53BP1 in mammalian double-strand break repair. Mol Cell 28:1045–1057. doi: 10.1016/j.molcel.2007.12.005 PubMedPubMedCentralCrossRefGoogle Scholar
  99. Xue H-Y, Zhang X, Wang Y et al (2016) In vivo gene therapy potentials of CRISPR-Cas9. Gene Ther 23:557–559. doi: 10.1038/gt.2016.25 PubMedCrossRefGoogle Scholar
  100. Yang D, Scavuzzo MA, Chmielowiec J et al (2016) Enrichment of G2/M cell cycle phase in human pluripotent stem cells enhances HDR-mediated gene repair with customizable endonucleases. Sci Rep 6:21264. doi: 10.1038/srep21264 PubMedPubMedCentralCrossRefGoogle Scholar
  101. Yoo E, Kim BU, Lee SY et al (2005) 53BP1 is associated with replication protein A and is required for RPA2 hyperphosphorylation following DNA damage. Oncogene 24:5423–5430. doi: 10.1038/sj.onc.1208710 PubMedCrossRefGoogle Scholar
  102. Yu C, Liu Y, Ma T et al (2015) Small molecules enhance CRISPR genome editing in pluripotent stem cells. Cell Stem Cell 16:142–147. doi: 10.1016/j.stem.2015.01.003 PubMedPubMedCentralCrossRefGoogle Scholar
  103. Zakharyevich K, Ma Y, Tang S et al (2010) Temporally and biochemically distinct activities of Exo1 during meiosis: double-strand break resection and resolution of double Holliday junctions. Mol Cell 40:1001–1015. doi: 10.1016/j.molcel.2010.11.032 PubMedPubMedCentralCrossRefGoogle Scholar
  104. Zimmermann M, de Lange T (2014) 53BP1: pro choice in DNA repair. Trends Cell Biol 24:108–117. doi: 10.1016/j.tcb.2013.09.003 PubMedCrossRefGoogle Scholar
  105. Zimmermann M, Lottersberger F, Buonomo SB et al (2013) 53BP1 regulates DSB repair using Rif1 to control 5′ end resection. Science 339:700–704. doi: 10.1126/science.1231573 PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Max-Delbrück-Centrum für Molekulare MedizinBerlinGermany
  2. 2.Berlin Institute of HealthBerlinGermany
  3. 3.Deutsches Zentrum für Neurodegenerative Erkrankungen e. V. (DZNE)MunichGermany
  4. 4.Institute of Developmental Genetics, Helmholtz Zentrum MünchenGerman Research Center for Environmental HealthNeuherbergGermany
  5. 5.Chair of Developmental GeneticsTechnische Universität München-WeihenstephanNeuherbergGermany
  6. 6.Munich Cluster for Systems Neurology (SyNergy)MunichGermany

Personalised recommendations