Mammalian Genome

, Volume 27, Issue 11–12, pp 556–564 | Cite as

Deregulation of the Hippo pathway in mouse mammary stem cells promotes mammary tumorigenesis

  • Hongbin Li
  • Barry M. GumbinerEmail author


The Hippo–YAP pathway mediates organ size control, contact inhibition, and tumorigenesis. It is a kinase cascade that inhibits the nuclear localization and transcriptional activities of YAP and TAZ. E-cadherin, cell junctions, polarity proteins, and the merlin/NF2 tumor suppressor activate the pathway to inhibit YAP/TAZ activity, while growth factor signaling inhibits the pathway to activate YAP/TAZ in the nucleus. We examined its role in the development of mouse mammary glands and tumor formation using gland reconstitution by transplantation of genetically modified mammary stem cells (MaSCs). Knockdown of YAP and TAZ with shRNA in MaSCs did not inhibit gland reconstitution. In contrast, knockdown of β-catenin blocked gland reconstitution, consistent with the known role of Wnt signaling in mammary gland development. However, we find that Hippo signaling is involved in mammary tumor formation. Expression of a constitutively active form of YAP caused rapid formation of large tumors. Moreover, knockdown of YAP/TAZ slowed the development of tumors in polyoma middle T transgenic mice, a well-studied mammary tumor model involving activation of several signaling pathways. YAP accumulated in nuclei of mammary glands in ErbB2/EGFR-transgenic mice, suggesting that EGFR signaling affects YAP in vivo similar to cell culture. ErbB2/EGFR-transgenic mice develop mammary tumors in 7–8 months, but surprisingly, MaSCs from these mice did not form tumors when transplanted into host mice. Nonetheless, expression of dominant-negative Lats, which inhibits Hippo signaling, leads to tumor formation in ErbB2-transgenic mice, suggesting that Hippo signaling is involved in EGFR-induced mammary tumorigenesis.


Mammary Gland Mammary Tumor Mammary Gland Development Mammary Tumorigenesis Mammary Stem Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We wish to thank Yongliang Huo for teaching us the MaSC transplantation method while at UVA. We also thank Nam Gyun Kim and Alisha Mendonsa for reading drafts of the manuscript and providing feedback. The work in this manuscript was supported by NIH Grant R01 GM098615 to BMG.


  1. Aragona M, Panciera T, Manfrin A, Giulitti S, Michielin F, Elvassore N, Dupont S, Piccolo S (2013) A mechanical checkpoint controls multicellular growth through YAP/TAZ regulation by actin-processing factors. Cell 154:1047–1059CrossRefPubMedGoogle Scholar
  2. Bartucci M, Dattilo R, Moriconi C, Pagliuca A, Mottolese M, Federici G, Benedetto AD, Todaro M, Stassi G, Sperati F, Amabile MI, Pilozzi E, Patrizii M, Biffoni M, Maugeri-Sacca M, Piccolo S, De Maria R (2015) TAZ is required for metastatic activity and chemoresistance of breast cancer stem cells. Oncogene 34:681–690CrossRefPubMedGoogle Scholar
  3. Bossuyt W, Chen CL, Chen Q, Sudol M, McNeill H, Pan D, Kopp A, Halder G (2013) An evolutionary shift in the regulation of the Hippo pathway between mice and flies. Oncogene 33(10):1218–1228CrossRefPubMedPubMedCentralGoogle Scholar
  4. Campbell KS, Ogris E, Burke B, Su W, Auger KR, Druker BJ, Schaffhausen BS, Roberts TM, Pallas DC (1994) Polyoma middle tumor antigen interacts with SHC protein via the NPTY (Asn-Pro-Thr-Tyr) motif in middle tumor antigen. Proc Natl Acad Sci USA 91:6344–6348CrossRefPubMedPubMedCentralGoogle Scholar
  5. Cardiff RD, Anver MR, Gusterson BA, Hennighausen L, Jensen RA, Merino MJ, Rehm S, Russo J, Tavassoli FA, Wakefield LM, Ward JM, Green JE (2000) The mammary pathology of genetically engineered mice: the consensus report and recommendations from the Annapolis meeting. Oncogene 19:968–988CrossRefPubMedGoogle Scholar
  6. Chan SW, Lim CJ, Guo K, Ng CP, Lee I, Hunziker W, Zeng Q, Hong W (2008) A role for TAZ in migration, invasion, and tumorigenesis of breast cancer cells. Cancer Res 68:2592–2598CrossRefPubMedGoogle Scholar
  7. Chen Q, Zhang N, Gray RS, Li H, Ewald AJ, Zahnow CA, Pan D (2014) A temporal requirement for Hippo signaling in mammary gland differentiation, growth, and tumorigenesis. Genes Dev 28:432–437CrossRefPubMedPubMedCentralGoogle Scholar
  8. Chen HY, Yu SL, Ho BC, Su KY, Hsu YC, Chang CS, Li YC, Yang SY, Hsu PY, Ho H, Chang YH, Chen CY, Yang HI, Hsu CP, Yang TY, Chen KC, Hsu KH, Tseng JS, Hsia JY, Chuang CY, Yuan S, Lee MH, Liu CH, Wu GI, Hsiung CA, Chen YM, Wang CL, Huang MS, Yu CJ, Chen KY, Tsai YH, Su WC, Chen HW, Chen JJ, Chen CJ, Chang GC, Yang PC, Li KC (2015) R331W missense mutation of oncogene YAP1 Is a germline risk allele for lung adenocarcinoma with medical actionability. J Clin Oncol 33:2303–2310CrossRefPubMedGoogle Scholar
  9. Cordenonsi M, Zanconato F, Azzolin L, Forcato M, Rosato A, Frasson C, Inui M, Montagner M, Parenti AR, Poletti A, Daidone MG, Dupont S, Basso G, Bicciato S, Piccolo S (2011) The Hippo transducer TAZ confers cancer stem cell-related traits on breast cancer cells. Cell 147:759–772CrossRefPubMedGoogle Scholar
  10. Courtneidge SA, Smith AE (1983) Polyoma virus transforming protein associates with the product of the c-src cellular gene. Nature 303:435–439CrossRefPubMedGoogle Scholar
  11. Fan R, Kim NG, Gumbiner BM (2013) Regulation of Hippo pathway by mitogenic growth factors via phosphoinositide 3-kinase and phosphoinositide-dependent kinase-1. Proc Natl Acad Sci USA 110:2569–2574CrossRefPubMedPubMedCentralGoogle Scholar
  12. Gumbiner BM, Kim NG (2014) The Hippo-YAP signaling pathway and contact inhibition of growth. J Cell Sci 127:709–717CrossRefPubMedPubMedCentralGoogle Scholar
  13. Guy CT, Webster MA, Schaller M, Parsons TJ, Cardiff RD, Muller WJ (1992) Expression of the neu protooncogene in the mammary epithelium of transgenic mice induces metastatic disease. Proc Natl Acad Sci USA 89:10578–10582CrossRefPubMedPubMedCentralGoogle Scholar
  14. Halder G, Johnson RL (2011) Hippo signaling: growth control and beyond. Development 138:9–22CrossRefPubMedPubMedCentralGoogle Scholar
  15. Halder G, Dupont S, Piccolo S (2012) Transduction of mechanical and cytoskeletal cues by YAP and TAZ. Nat Rev Mol Cell Biol 13:591–600CrossRefPubMedGoogle Scholar
  16. Hao Y, Chun A, Cheung K, Rashidi B, Yang X (2008) Tumor suppressor LATS1 is a negative regulator of oncogene YAP. J Biol Chem 283:5496–5509CrossRefPubMedGoogle Scholar
  17. Hardy KM, Booth BW, Hendrix MJ, Salomon DS, Strizzi L (2010) ErbB/EGF signaling and EMT in mammary development and breast cancer. J Mammary Gland Biol Neoplas 15:191–199CrossRefGoogle Scholar
  18. Harvey KF, Zhang X, Thomas DM (2013) The Hippo pathway and human cancer. Nat Rev Cancer 13:246–257CrossRefPubMedGoogle Scholar
  19. Hennighausen L (2000) Mouse models for breast cancer. Breast Cancer Res 2:2–7CrossRefPubMedGoogle Scholar
  20. Hopkins BD, Hodakoski C, Barrows D, Mense SM, Parsons RE (2014) PTEN function: the long and the short of it. Trends Biochem Sci 39:183–190CrossRefPubMedPubMedCentralGoogle Scholar
  21. Hsu W, Shakya R, Costantini F (2001) Impaired mammary gland and lymphoid development caused by inducible expression of Axin in transgenic mice. J Cell Biol 155:1055–1064CrossRefPubMedPubMedCentralGoogle Scholar
  22. Kim NG, Gumbiner BM (2015) Adhesion to fibronectin regulates Hippo signaling via the FAK–Src–PI3K pathway. J Cell Biol 210:503–515CrossRefPubMedPubMedCentralGoogle Scholar
  23. Kim H, Muller WJ (1999) The role of the epidermal growth factor receptor family in mammary tumorigenesis and metastasis. Exp Cell Res 253:78–87CrossRefPubMedGoogle Scholar
  24. Kim NG, Koh E, Chen X, Gumbiner BM (2011) E-cadherin mediates contact inhibition of proliferation through Hippo signaling-pathway components. Proc Natl Acad Sci USA 108:11930–11935CrossRefPubMedPubMedCentralGoogle Scholar
  25. Kim HM, Jung WH, Koo JS (2015) Expression of Yes-associated protein (YAP) in metastatic breast cancer. Int J Clin Exp Pathol 8:11248–11257PubMedPubMedCentralGoogle Scholar
  26. Koren S, Bentires-Alj M (2013) Mouse models of PIK3CA mutations: one mutation initiates heterogeneous mammary tumors. FEBS J 280:2758–2765CrossRefPubMedGoogle Scholar
  27. Lai D, Ho KC, Hao Y, Yang X (2011) Taxol resistance in breast cancer cells is mediated by the hippo pathway component TAZ and its downstream transcriptional targets Cyr61 and CTGF. Cancer Res 71:2728–2738CrossRefPubMedGoogle Scholar
  28. Lamar JM, Stern P, Liu H, Schindler JW, Jiang ZG, Hynes RO (2012) The Hippo pathway target, YAP, promotes metastasis through its TEAD-interaction domain. Proc Natl Acad Sci USA 109:E2441–E2450CrossRefPubMedPubMedCentralGoogle Scholar
  29. Li P, Silvis MR, Honaker Y, Lien WH, Arron ST, Vasioukhin V (2016) αE-catenin inhibits a Src-YAP1 oncogenic module that couples tyrosine kinases and the effector of Hippo signaling pathway. Genes Dev 30:798–811CrossRefPubMedPubMedCentralGoogle Scholar
  30. Lin EY, Jones JG, Li P, Zhu L, Whitney KD, Muller WJ, Pollard JW (2003) Progression to malignancy in the polyoma middle T oncoprotein mouse breast cancer model provides a reliable model for human diseases. Am J Pathol 163:2113–2126CrossRefPubMedPubMedCentralGoogle Scholar
  31. McCaffrey LM, Macara IG (2009) The Par3/aPKC interaction is essential for end bud remodeling and progenitor differentiation during mammary gland morphogenesis. Genes Dev 23:1450–1460CrossRefPubMedPubMedCentralGoogle Scholar
  32. McDonald JH (2015) Handbook of biological statistics. Sparky House Publishing, BaltimoreGoogle Scholar
  33. Min Kim H, Kim SK, Jung WH, Koo JS (2015) Metaplastic carcinoma show different expression pattern of YAP compared to triple-negative breast cancer. Tumor Biol 36:1207–1212CrossRefGoogle Scholar
  34. Muller WJ, Sinn E, Pattengale PK, Wallace R, Leder P (1988) Single-step induction of mammary adenocarcinoma in transgenic mice bearing the activated c-neu oncogene. Cell 54:105–115CrossRefPubMedGoogle Scholar
  35. Pan D (2015) YAPing hippo forecasts a new target for lung cancer prevention and treatment. J Clin Oncol 33:2311–2313CrossRefPubMedPubMedCentralGoogle Scholar
  36. Reddy BV, Irvine KD (2013) Regulation of Hippo signaling by EGFR-MAPK signaling through Ajuba family proteins. Dev Cell 24:459–471CrossRefPubMedPubMedCentralGoogle Scholar
  37. Su W, Liu W, Schaffhausen BS, Roberts TM (1995) Association of Polyomavirus middle tumor antigen with phospholipase C-γ1. J Biol Chem 270:12331–12334CrossRefPubMedGoogle Scholar
  38. Taniguchi K, Wu LW, Grivennikov SI, de Jong PR, Lian I, Yu FX, Wang K, Ho SB, Boland BS, Chang JT, Sandborn WJ, Hardiman G, Raz E, Maehara Y, Yoshimura A, Zucman-Rossi J, Guan KL, Karin M (2015) A gp130-Src-YAP module links inflammation to epithelial regeneration. Nature 519:57–62CrossRefPubMedPubMedCentralGoogle Scholar
  39. Troyer KL, Lee DC (2001) Regulation of mouse mammary gland development and tumorigenesis by the ERBB signaling network. J Mammary Gland Biol Neoplasia 6:7–21CrossRefPubMedGoogle Scholar
  40. Tumaneng K, Russell RC, Guan KL (2012) Organ size control by Hippo and TOR pathways. Curr Biol 22:R368–R379CrossRefPubMedPubMedCentralGoogle Scholar
  41. Vici P, Mottolese M, Pizzuti L, Barba M, Sperati F, Terrenato I, Di Benedetto A, Natoli C, Gamucci T, Angelucci D, Ramieri MT, Di Lauro L, Sergi D, Bartucci M, Dattilo R, Pagliuca A, De Maria R, Maugeri-Sacca M (2014) The Hippo transducer TAZ as a biomarker of pathological complete response in HER2-positive breast cancer patients treated with trastuzumab-based neoadjuvant therapy. Oncotarget 5:9619–9625CrossRefPubMedPubMedCentralGoogle Scholar
  42. Wang W, Xiao ZD, Li X, Aziz KE, Gan B, Johnson RL, Chen J (2015) AMPK modulates Hippo pathway activity to regulate energy homeostasis. Nat Cell Biol 17:490–499CrossRefPubMedPubMedCentralGoogle Scholar
  43. Welm BE, Dijkgraaf GJ, Bledau AS, Welm AL, Werb Z (2008) Lentiviral transduction of mammary stem cells for analysis of gene function during development and cancer. Cell Stem Cell 2:90–102CrossRefPubMedPubMedCentralGoogle Scholar
  44. Whitman M, Kaplan DR, Schaffhausen B, Cantley L, Roberts TM (1985) Association of phosphatidylinositol kinase activity with polyoma middle-T competent for transformation. Nature 315:239–242CrossRefPubMedGoogle Scholar
  45. Wickenden JA, Watson CJ (2010) Key signalling nodes in mammary gland development and cancer. Signalling downstream of PI3kinase in mammary epithelium: a play in 3 Akts. Breast Cancer Res 12:202CrossRefPubMedPubMedCentralGoogle Scholar
  46. Wiznerowicz M, Trono D (2003) Conditional suppression of cellular genes: lentivirus vector-mediated drug-inducible RNA interference. J Virol 77:8957–8961CrossRefPubMedPubMedCentralGoogle Scholar
  47. Yu FX, Guan KL (2013) The Hippo pathway: regulators and regulations. Genes Dev 27:355–371CrossRefPubMedPubMedCentralGoogle Scholar
  48. Yu FX, Zhao B, Panupinthu N, Jewell JL, Lian I, Wang LH, Zhao J, Yuan H, Tumaneng K, Li H, Fu XD, Mills GB, Guan KL (2012) Regulation of the Hippo-YAP pathway by G-protein-coupled receptor signaling. Cell 150:780–791CrossRefPubMedPubMedCentralGoogle Scholar
  49. Yu FX, Luo J, Mo JS, Liu G, Kim YC, Meng Z, Zhao L, Peyman G, Ouyang H, Jiang W, Zhao J, Chen X, Zhang L, Wang CY, Bastian BC, Zhang K, Guan KL (2014) Mutant Gq/11 promote uveal melanoma tumorigenesis by activating YAP. Cancer Cell 25:822–830CrossRefPubMedPubMedCentralGoogle Scholar
  50. Zhao B, Wei X, Li W, Udan RS, Yang Q, Kim J, Xie J, Ikenoue T, Yu J, Li L, Zheng P, Ye K, Chinnaiyan A, Halder G, Lai ZC, Guan KL (2007) Inactivation of YAP oncoprotein by the Hippo pathway is involved in cell contact inhibition and tissue growth control. Genes Dev 21:2747–2761CrossRefPubMedPubMedCentralGoogle Scholar
  51. Zhao B, Kim J, Ye X, Lai ZC, Guan KL (2009) Both TEAD-binding and WW domains are required for the growth stimulation and oncogenic transformation activity of yes-associated protein. Cancer Res 69:1089–1098CrossRefPubMedGoogle Scholar
  52. Zhao B, Li L, Tumaneng K, Wang CY, Guan KL (2010) A coordinated phosphorylation by Lats and CK1 regulates YAP stability through SCF(β-TRCP). Genes Dev 24:72–85CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Cell BiologyUniversity of Virginia School of MedicineCharlottesvilleUSA
  2. 2.Department of Pediatrics, Center for Developmental Biology and Regenerative Medicine, Seattle Children’s Research InstituteUniversity of Washington School of MedicineSeattleUSA

Personalised recommendations