Mammalian Genome

, Volume 27, Issue 11–12, pp 538–555 | Cite as

Mouse models of Down syndrome: gene content and consequences

  • Meenal Gupta
  • A. Ranjitha Dhanasekaran
  • Katheleen J. GardinerEmail author


Down syndrome (DS), trisomy of human chromosome 21 (Hsa21), is challenging to model in mice. Not only is it a contiguous gene syndrome spanning 35 Mb of the long arm of Hsa21, but orthologs of Hsa21 genes map to segments of three mouse chromosomes, Mmu16, Mmu17, and Mmu10. The Ts65Dn was the first viable segmental trisomy mouse model for DS; it is a partial trisomy currently popular in preclinical evaluations of drugs for cognition in DS. Limitations of the Ts65Dn are as follows: (i) it is trisomic for 125 human protein-coding orthologs, but only 90 of these are Hsa21 orthologs and (ii) it lacks trisomy for ~75 Hsa21 orthologs. In recent years, several additional mouse models of DS have been generated, each trisomic for a different subset of Hsa21 genes or their orthologs. To best exploit these models and interpret the results obtained with them, prior to proposing clinical trials, an understanding of their trisomic gene content, relative to full trisomy 21, is necessary. Here we first review the functional information on Hsa21 protein-coding genes and the more recent annotation of a large number of functional RNA genes. We then discuss the conservation and genomic distribution of Hsa21 orthologs in the mouse genome and the distribution of mouse-specific genes. Lastly, we consider the strengths and weaknesses of mouse models of DS based on the number and nature of the Hsa21 orthologs that are, and are not, trisomic in each, and discuss their validity for use in preclinical evaluations of drug responses.


Down Syndrome Morris Water Maze Context Fear Conditioning Preclinical Evaluation Partial Trisomy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by the National Institute of Child Health and Human Development (HD071585) and the Linda Crnic Institute for Down Syndrome.

Supplementary material

335_2016_9661_MOESM1_ESM.xlsx (112 kb)
Supplementary material 1 (XLSX 112 kb)


  1. Ahn KJ, Jeong HK, Choi HS, Ryoo SR, Kim YJ, Goo JS, Choi SY, Han JS, Ha I, Song WJ (2006) DYRK1A BAC transgenic mice show altered synaptic plasticity with learning and memory defects. Neurobiol Dis 22:463–472CrossRefPubMedGoogle Scholar
  2. Al Ahmad A, Lee B, Stack J, Parham C, Campbell J, Clarke D, Fertala A, Bix GJ (2010) Endostatin binds nerve growth factor and thereby inhibits neurite outgrowth and neuronal migration in-vitro. Brain Res 1360:28–39CrossRefPubMedGoogle Scholar
  3. Alim I, Teves L, Li R, Mori Y, Tymianski M (2013) Modulation of NMDAR subunit expression by TRPM2 channels regulates neuronal vulnerability to ischemic cell death. J Neurosci 33:17264–17277CrossRefPubMedGoogle Scholar
  4. Andrews SJ, Rothnagel JA (2014) Emerging evidence for functional peptides encoded by short open reading frames. Nat Rev Genet 15:193–204CrossRefPubMedGoogle Scholar
  5. Antonarakis SE, Lyle R, Dermitzakis ET, Reymond A, Deutsch S (2004) Chromosome 21 and Down syndrome: from genomics to pathophysiology. Nat Rev Genet 5:725–738CrossRefPubMedGoogle Scholar
  6. Bae JS, Koo NY, Namkoong E, Davies AJ, Choi SK, Shin Y, Jin M, Hwang SM, Mikoshiba K, Park K (2013) Chaperone stress 70 protein (STCH) binds and regulates two acid/base transporters NBCe1-B and NHE1. J Biol Chem 288:6295–6305CrossRefPubMedPubMedCentralGoogle Scholar
  7. Ballarino M, Cazzella V, D’Andrea D, Grassi L, Bisceglie L, Cipriano A, Santini T, Pinnarò C, Morlando M, Tramontano A, Bozzoni I (2015) Novel long noncoding RNAs (lncRNAs) in myogenesis: a miR-31 overlapping lncRNA transcript controls myoblast differentiation. Mol Cell Biol 35:728–736CrossRefPubMedGoogle Scholar
  8. Bartesaghi R, Haydar TF, Delabar JM, Dierssen M, Martínez-Cué C, Bianchi DW (2015) New perspectives for the rescue of cognitive disability in Down syndrome. J Neurosci 35:13843–13852CrossRefPubMedGoogle Scholar
  9. Baxter LL, Moran TH, Richtsmeier JT, Troncoso J, Reeves RH (2000) Discovery and genetic localization of Down syndrome cerebellar phenotypes using the Ts65Dn mouse. Hum Mol Genet 9:195–202CrossRefPubMedGoogle Scholar
  10. Becker W, Soppa U, Tejedor FJ (2014) DYRK1A: a potential drug target for multiple Down syndrome neuropathologies. CNS Neurol Disord Drug Targets 13:26–33CrossRefPubMedGoogle Scholar
  11. Begley CG, Ellis LM (2012) Drug development: raise standards for preclinical cancer research. Nature 483:531–533CrossRefPubMedGoogle Scholar
  12. Belichenko PV, Kleschevnikov AM, Becker A, Wagner GE, Lysenko LV, Yu YE, Mobley WC (2015) Down syndrome cognitive phenotypes modeled in mice trisomic for all HSA 21 homologues. PLoS ONE 10:e0134861CrossRefPubMedPubMedCentralGoogle Scholar
  13. Bera TK, Zimonjic DB, Popescu NC, Sathyanarayana BK, Kumar V, Lee B (2002) Pastan I (2002) POTE, a highly homologous gene family located on numerous chromosomes and expressed in prostate, ovary, testis, placenta, and prostate cancer. Proc Natl Acad Sci USA 99:16975–16980CrossRefPubMedPubMedCentralGoogle Scholar
  14. Bergmann JH, Spector DL (2014) Long non-coding RNAs: modulators of nuclear structure and function. Curr Opin Cell Biol 26:10–18CrossRefPubMedGoogle Scholar
  15. Bialowas-McGoey LA, Lesicka A, Whitaker-Azmitia PM (2008) Vitamin E increases S100B-mediated microglial activation in an S100B-overexpressing mouse model of pathological aging. Glia 56:1780–1790CrossRefPubMedGoogle Scholar
  16. Block A, Dhanasekaran AR, Ahmed MD, Gardiner KJ (2014) Abnormal protein profiles in hippocampus of mouse models of Down syndrome: similarities with Alzheimer’s Disease. J Alzheimer’s Dis Parkinsonism 4:138–149Google Scholar
  17. Block A, Ahmed MM, Dhanasekaran AR, Tong S, Gardiner KJ (2015) Sex differences in protein expression in the mouse brain and their perturbations in a model of Down syndrome. Biol Sex Differ 6:24CrossRefPubMedPubMedCentralGoogle Scholar
  18. Blythe SA, Cha SW, Tadjuidje E, Heasman J, Klein PS (2010) beta-Catenin primes organizer gene expression by recruiting a histone H3 arginine 8 methyltransferase, Prmt2. Dev Cell 19:220–231CrossRefPubMedPubMedCentralGoogle Scholar
  19. Boada R, Hutaff-Lee C, Schrader A, Weitzenkamp D, Benke TA, Goldson EJ, Costa AC (2012) Antagonism of NMDA receptors as a potential treatment for Down syndrome: a pilot randomized controlled trial. Transl Psychiatry 2:e141CrossRefPubMedPubMedCentralGoogle Scholar
  20. Bofill-De Ros X, Santos M, Vila-Casadesús M, Villanueva E, Andreu N, Dierssen M, Fillat C (2015) Genome-wide miR-155 and miR-802 target gene identification in the hippocampus of Ts65Dn Down syndrome mouse model by miRNA sponges. BMC Genom 16:907CrossRefGoogle Scholar
  21. Brault V, Duchon A, Romestaing C, Sahun I, Pothion S, Karout M, Borel C, Dembele D, Bizot JC, Messaddeq N, Sharp AJ, Roussel D, Antonarakis SE, Dierssen M, Hérault Y (2015) Opposite phenotypes of muscle strength and locomotor function in mouse models of partial trisomy and monosomy 21 for the proximal Hspa13-App region. PLoS Genet 11:e1005062CrossRefPubMedPubMedCentralGoogle Scholar
  22. Bruford EA, Lane L, Harrow J (2015) Devising a consensus framework for validation of novel human coding loci. J Proteome Res 14:4945–4948CrossRefPubMedPubMedCentralGoogle Scholar
  23. Canfield MA, Honein MA, Yuskiv N, Xing J, Mai CT, Collins JS, Devine O, Petrini J, Ramadhani TA, Hobbs CA, Kirby RS (2006) National estimates and race/ethnic-specific variation of selected birth defects in the United States, 1999-2001. Birth Defects Res A Clin Mol Teratol 76:747–756CrossRefPubMedGoogle Scholar
  24. Capone GT (2001) Down syndrome: advances in molecular biology and the neurosciences. J Dev Behav Pediatr 22:40–59CrossRefPubMedGoogle Scholar
  25. Celik O, Nazıroğlu M (2012) Melatonin modulates apoptosis and TRPM2 channels in transfected cells activated by oxidative stress. Physiol Behav 107:458–465CrossRefPubMedGoogle Scholar
  26. Chapman RS, Hesketh LJ (2000) Behavioral phenotype of individuals with Down syndrome. Ment Retard Dev Disabil Res Rev 6:84–95CrossRefPubMedGoogle Scholar
  27. Choong XY, Tosh JL, Pulford LJ, Fisher EM (2015) Dissecting Alzheimer disease in Down syndrome using mouse models. Front Behav Neurosci 9:268CrossRefPubMedPubMedCentralGoogle Scholar
  28. Choucair-Jaafar N, Laporte V, Levy R, Poindron P, Lombard Y, Gies JP (2011) Complement receptor 3 (CD11b/CD18) is implicated in the elimination of β-amyloid peptides. Fundam Clin Pharmacol 25:115–122CrossRefPubMedGoogle Scholar
  29. Cooper A, Grigoryan G, Guy-David L, Tsoory MM, Chen A, Reuveny E (2012) Trisomy of the G protein-coupled K+ channel gene, Kcnj6, affects reward mechanisms, cognitive functions, and synaptic plasticity in mice. Proc Natl Acad Sci U S A. 109:2642–2647CrossRefPubMedPubMedCentralGoogle Scholar
  30. Davisson MT, Schmidt C, Akeson E (1990) Segmental trisomy of murine chromosome 16: a new model system for studying Down syndrome. Prog Clin Biol Res 360:263–280PubMedGoogle Scholar
  31. Davisson MT, Schmidt C, Reeves RH, Irving NG, Akeson EC, Harris BS, Bronson RT (1993) Segmental trisomy as a mouse model for Down syndrome. Prog Clin Biol Res 384:117–133PubMedGoogle Scholar
  32. Davisson MT, Bechtel LJ, Akeson EC, Fortna A, Slavov D, Gardiner K (2001) Evolutionary breakpoints on human chromosome 21. Genomics 78:99–106CrossRefPubMedGoogle Scholar
  33. de Hoon M, Shin JW, Carninci P (2015) Paradigm shifts in genomics through the FANTOM projects. Mamm Genome 26:391–402CrossRefPubMedPubMedCentralGoogle Scholar
  34. De la Torre R, De Sola S, Pons M, Duchon A, de Lagran MM, Farré M, Fitó M, Benejam B, Langohr K, Rodriguez J, Pujadas M, Bizot JC, Cuenca A, Janel N, Catuara S, Covas MI, Blehaut H, Herault Y, Delabar JM, Dierssen M (2014) Epigallocatechin-3-gallate, a DYRK1A inhibitor, rescues cognitive deficits in Down syndrome mouse models and in humans. Mol Nutr Food Res 58:278–288CrossRefPubMedGoogle Scholar
  35. Deininger MH, Fimmen BA, Thal DR, Schluesener HJ, Meyermann R (2002) Aberrant neuronal and paracellular deposition of endostatin in brains of patients with Alzheimer’s disease. J Neurosci 22:10621–10626PubMedGoogle Scholar
  36. Derrien T, Johnson R, Bussotti G, Tanzer A, Djebali S, Tilgner H, Guernec G, Martin D, Merkel A, Knowles DG, Lagarde J, Veeravalli L, Ruan X, Ruan Y, Lassmann T, Carninci P, Brown JB, Lipovich L, Gonzalez JM, Thomas M, Davis CA, Shiekhattar R, Gingeras TR, Hubbard TJ, Notredame C, Harrow J, Guigó R (2012) The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res 22:1775–1789CrossRefPubMedPubMedCentralGoogle Scholar
  37. Donato R, Sorci G, Riuzzi F, Arcuri C, Bianchi R, Brozzi F, Tubaro C, Giambanco I (2009) S100B’s double life: intracellular regulator and extracellular signal. Biochim Biophys Acta 1793:1008–1022CrossRefPubMedGoogle Scholar
  38. Duchon A, Raveau M, Chevalier C, Nalesso V, Sharp AJ, Herault Y (2011) Identification of the translocation breakpoints in the Ts65Dn and Ts1Cje mouse lines: relevance for modeling Down syndrome. Mamm Genome 22:674–684CrossRefPubMedPubMedCentralGoogle Scholar
  39. Duguay D, Bélanger-Nelson E, Mongrain V, Beben A, Khatchadourian A, Cermakian N (2011) Dynein light chain Tctex-type 1 modulates orexin signaling through its interaction with orexin 1 receptor. PLoS One 6:e26430CrossRefPubMedPubMedCentralGoogle Scholar
  40. Emmrich S, Streltsov A, Schmidt F, Thangapandi VR, Reinhardt D, Klusmann JH (2014) LincRNAs MONC and MIR100HG act as oncogenes in acute megakaryoblastic leukemia. Mol Cancer 13:171CrossRefPubMedPubMedCentralGoogle Scholar
  41. Faraoni I, Antonetti FR, Cardone J, Bonmassar E (2009) miR-155 gene: a typical multifunctional microRNA. Biochim Biophys Acta 1792:497–505CrossRefPubMedGoogle Scholar
  42. Feliciano A, Castellvi J, Artero-Castro A, Leal JA, Romagosa C, Hernández-Losa J, Peg V, Fabra A, Vidal F, Kondoh H, Ramón Y, Cajal S, Lleonart ME (2013) miR-125b acts as a tumor suppressor in breast tumorigenesis via its novel direct targets ENPEP, CK2-α, CCNJ, and MEGF9. PLoS ONE 8:e76247CrossRefPubMedPubMedCentralGoogle Scholar
  43. Flicek P, Amode MR, Barrell D, Beal K, Billis K, Brent S, Carvalho-Silva D, Clapham P, Coates G, Fitzgerald S, Gil L, Girón CG, Gordon L, Hourlier T, Hunt S, Johnson N, Juettemann T, Kähäri AK, Keenan S, Kulesha E, Martin FJ, Maurel T, McLaren WM, Murphy DN, Nag R, Overduin B, Pignatelli M, Pritchard B, Pritchard E, Riat HS, Ruffier M, Sheppard D, Taylor K, Thormann A, Trevanion SJ, Vullo A, Wilder SP, Wilson M, Zadissa A, Aken BL, Birney E, Cunningham F, Harrow J, Herrero J, Hubbard TJ, Kinsella R, Muffato M, Parker A, Spudich G, Yates A, Zerbino DR, Searle SM (2014) Ensembl 2014. Nucleic Acids Res 42:D749–D755CrossRefPubMedGoogle Scholar
  44. Flynn RA, Chang HY (2014) Long noncoding RNAs in cell-fate programming and reprogramming. Cell Stem Cell 14:752–761CrossRefPubMedPubMedCentralGoogle Scholar
  45. García-Cerro S, Martínez P, Vidal V, Corrales A, Flórez J, Vidal R, Rueda N, Arbonés ML, Martínez-Cué C (2014) Overexpression of Dyrk1A is implicated in several cognitive, electrophysiological and neuromorphological alterations found in a mouse model of Down syndrome. PLoS One 4(9):e106572CrossRefGoogle Scholar
  46. Gardiner KJ (2014) Pharmacological approaches to improving cognitive function in Down syndrome: current status and considerations. Drug Des Devel Ther 17:103–125CrossRefGoogle Scholar
  47. Gardiner K, Slavov D, Bechtel L, Davisson M (2002) Annotation of human chromosome 21 for relevance to Down syndrome: gene structure and expression analysis. Genomics 79:833–843CrossRefPubMedGoogle Scholar
  48. Goff LA, Groff AF, Sauvageau M, Trayes-Gibson Z, Sanchez-Gomez DB, Morse M, Martin RD, Elcavage LE, Liapis SC, Gonzalez-Celeiro M, Plana O, Li E, Gerhardinger C, Tomassy GS, Arlotta P, Rinn J (2015) Spatiotemporal expression and transcriptional perturbations by long noncoding RNAs in the mouse brain. Proc Natl Acad Sci USA 112:6855–6862CrossRefPubMedPubMedCentralGoogle Scholar
  49. Goodliffe JW, Olmos-Serrano JL, Aziz NM, Pennings JL, Guedj F, Bianchi DW, Haydar TF (2016) Absence of prenatal forebrain defects in the Dp(16)1Yey/+ Mouse model of Down syndrome. J Neurosci 36:2926–2944CrossRefPubMedPubMedCentralGoogle Scholar
  50. Gray KA, Yates B, Seal RL, Wright MW, Bruford EA (2015) the HGNC resources in 2015. Nucleic Acids Res 43:D1079–D1085CrossRefPubMedGoogle Scholar
  51. Gribble SM, Wiseman FK, Clayton S, Prigmore E, Langley E, Yang F, Maguire S, Fu B, Rajan D, Sheppard O, Scott C, Hauser H, Stephens PJ, Stebbings LA, Ng BL, Fitzgerald T, Quail MA, Banerjee R, Rothkamm K, Tybulewicz VL, Fisher EM, Carter NP (2013) Massively parallel sequencing reveals the complex structure of an irradiated human chromosome on a mouse background in the tc1 model of down syndrome. PLoS One 8:e60482CrossRefPubMedPubMedCentralGoogle Scholar
  52. Gupta RA, Shah N, Wang KC, Kim J, Horlings HM, Wong DJ, Tsai MC, Hung T, Argani P, Rinn JL, Wang Y, Brzoska P, Kong B, Li R, West RB, van de Vijver MJ, Sukumar S, Chang HY (2010) Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature 464:1071–1076CrossRefPubMedPubMedCentralGoogle Scholar
  53. Hanney M, Prasher V, Williams N, Jones EL, Aarsland D, Corbett A, Lawrence D, Yu LM, Tyrer S, Francis PT, Johnson T, Bullock R, Ballard C, MEADOWS trial researchers (2012) Memantine for dementia in adults older than 40 years with Down’s syndrome (MEADOWS): a randomised, double-blind, placebo-controlled trial. Lancet 379:528–536CrossRefPubMedGoogle Scholar
  54. Harrow J, Frankish A, Gonzalez JM, Tapanari E, Diekhans M, Kokocinski F, Aken BL, Barrell D, Zadissa A, Searle S, Barnes I, Bignell A, Boychenko V, Hunt T, Kay M, Mukherjee G, Rajan J, Despacio-Reyes G, Saunders G, Steward C, Harte R, Lin M, Howald C, Tanzer A, Derrien T, Chrast J, Walters N, Balasubramanian S, Pei B, Tress M, Rodriguez JM, Ezkurdia I, van Baren J, Brent M, Haussler D, Kellis M, Valencia A, Reymond A, Gerstein M, Guigó R, Hubbard TJ (2012) GENCODE: the reference human genome annotation for The ENCODE Project. Genome Res 22:1760–1774CrossRefPubMedPubMedCentralGoogle Scholar
  55. Harrow JL, Steward CA, Frankish A, Gilbert JG, Gonzalez JM, Loveland JE, Mudge J, Sheppard D, Thomas M, Trevanion S, Wilming LG (2014) The Vertebrate Genome Annotation browser 10 years on. Nucleic Acids Res 42:D771–D779CrossRefPubMedGoogle Scholar
  56. Hattori M, Fujiyama A, Taylor TD, Watanabe H, Yada T, Park HS, Toyoda A, Ishii K, Totoki Y, Choi DK, Groner Y, Soeda E, Ohki M, Takagi T, Sakaki Y, Taudien S, Blechschmidt K, Polley A, Menzel U, Delabar J, Kumpf K, Lehmann R, Patterson D, Reichwald K, Rump A, Schillhabel M, Schudy A, Zimmermann W, Rosenthal A, Kudoh J, Schibuya K, Kawasaki K, Asakawa S, Shintani A, Sasaki T, Nagamine K, Mitsuyama S, Antonarakis SE, Minoshima S, Shimizu N, Nordsiek G, Hornischer K, Brant P, Scharfe M, Schon O, Desario A, Reichelt J, Kauer G, Blocker H, Ramser J, Beck A, Klages S, Hennig S, Riesselmann L, Dagand E, Haaf T, Wehrmeyer S, Borzym K, Gardiner K, Nizetic D, Francis F, Lehrach H, Reinhardt R, Yaspo ML, Chromosome 21 mapping and sequencing consortium (2000) The DNA sequence of human chromosome 21. Nature 405:311–319CrossRefPubMedGoogle Scholar
  57. Head E, Lott IT, Wilcock DM, Lemere CA (2016) Aging in Down syndrome and the development of Alzheimer’s disease neuropathology. Curr Alzheimer Res 13:18–29CrossRefPubMedPubMedCentralGoogle Scholar
  58. Hilton JF, Christensen KE, Watkins D, Raby BA, Renaud Y, de la Luna S, Estivill X, MacKenzie RE, Hudson TJ, Rosenblatt DS (2003) The molecular basis of glutamate formiminotransferase deficiency. Hum Mutat 22:67–73CrossRefPubMedGoogle Scholar
  59. Horsch M, Seeburg PH, Adler T, Aguilar-Pimentel JA, Becker L, Calzada-Wack J, Garrett L, Götz A, Hans W, Higuchi M, Hölter SM, Naton B, Prehn C, Puk O, Rácz I, Rathkolb B, Rozman J, Schrewe A, Adamski J, Busch DH, Esposito I, Graw J, Ivandic B, Klingenspor M, Klopstock T, Mempel M, Ollert M, Schulz H, Wolf E, Wurst W, Zimmer A, Gailus-Durner V, Fuchs H, de Angelis MH, Beckers J (2011) Requirement of the RNA-editing enzyme ADAR2 for normal physiology in mice. J Biol Chem 286:18614–18622CrossRefPubMedPubMedCentralGoogle Scholar
  60. Hutson PH, Finger EN, Magliaro BC, Smith SM, Converso A, Sanderson PE, Mullins D, Hyde LA, Eschle BK, Turnbull Z, Sloan H, Guzzi M, Zhang X, Wang A, Rindgen D, Mazzola R, Vivian JA, Eddins D, Uslaner JM, Bednar R, Gambone C, Le-Mair W, Marino MJ, Sachs N, Xu G, Parmentier-Batteur S (2011) The selective phosphodiesterase 9 (PDE9) inhibitor PF-04447943 (6-[(3S,4S)-4-methyl-1-(pyrimidin-2-ylmethyl)pyrrolidin-3-yl]-1-(tetrahydro-2H-pyran-4-yl)-1,5-dihydro-4H-pyrazolo[3,4-d]pyrimidin-4-one) enhances synaptic plasticity and cognitive function in rodents. Neuropharmacology 61:665–676CrossRefPubMedGoogle Scholar
  61. Hüttenhofer A, Schattner P, Polacek N (2005) Non-coding RNAs: hope or hype? Trends Genet 21:289–297CrossRefPubMedGoogle Scholar
  62. Irving C, Basu A, Richmond S, Burn J, Wren C (2008) Twenty-year trends in prevalence and survival of Down syndrome. Eur J Hum Genet 16:1336–1340CrossRefPubMedGoogle Scholar
  63. Iwasaki H, Kovacic JC, Olive M, Beers JK, Yoshimoto T, Crook MF, Tonelli LH, Nabel EG (2010) Disruption of protein arginine N-methyltransferase 2 regulates leptin signaling and produces leanness in vivo through loss of STAT3 methylation. Circ Res 107:992–1001CrossRefPubMedPubMedCentralGoogle Scholar
  64. Jia J, Verma S, Nakayama S, Quillinan N, Grafe MR, Hurn PD, Herson PS (2011) Sex differences in neuroprotection provided by inhibition of TRPM2 channels following experimental stroke. J Cereb Blood Flow Metab 31:2160–2168CrossRefPubMedPubMedCentralGoogle Scholar
  65. Jiang X, Liu C, Yu T, Zhang L, Meng K, Xing Z, Belichenko PV, Kleschevnikov AM, Pao A, Peresie J, Wie S, Mobley WC, Yu YE (2015) Genetic dissection of the Down syndrome critical region. Hum Mol Genet 24:6540–6551CrossRefPubMedPubMedCentralGoogle Scholar
  66. Kido S, Sakuragi N, Bronner MP, Sayegh R, Berger R, Patterson D, Strauss JF 3rd (1993) D21S418E identifies a cAMP-regulated gene located on chromosome 21q22.3 that is expressed in placental syncytiotrophoblast and choriocarcinoma cells. Genomics 17:256–259CrossRefPubMedGoogle Scholar
  67. Korbel JO, Tirosh-Wagner T, Urban AE, Chen XN, Kasowski M, Dai L, Grubert F, Erdman C, Gao MC, Lange K, Sobel EM, Barlow GM, Aylsworth AS, Carpenter NJ, Clark RD, Cohen MY, Doran E, Falik-Zaccai T, Lewin SO, Lott IT, McGillivray BC, Moeschler JB, Pettenati MJ, Pueschel SM, Rao KW, Shaffer LG, Shohat M, Van Riper AJ, Warburton D, Weissman S, Gerstein MB, Snyder M, Korenberg JR (2009) The genetic architecture of Down syndrome phenotypes revealed by high-resolution analysis of human segmental trisomies. Proc Natl Acad Sci USA 106:12031–12036CrossRefPubMedPubMedCentralGoogle Scholar
  68. Korenberg JR, Chen XN, Schipper R, Sun Z, Gonsky R, Gerwehr S, Carpenter N, Daumer C, Dignan P, Disteche C, Graham JM Jr, Hugdins L, Mcgillivray B, Miyazaki K, Ogasawara N, Park JP, Pagon R, Pueschel S, Sack G, Say B, Schuffenhauer S, Soukup S, Yamanaka T (1994) Down syndrome phenotypes: the consequences of chromosomal imbalance. Proc Natl Acad Sci USA 91:4997–5001CrossRefPubMedPubMedCentralGoogle Scholar
  69. Kroker KS, Rast G, Giovannini R, Marti A, Dorner-Ciossek C, Rosenbrock H (2012) Inhibition of acetylcholinesterase and phosphodiesterase-9A has differential effects on hippocampal early and late LTP. Neuropharmacology 62:1964–1974CrossRefPubMedGoogle Scholar
  70. Kuehn BM (2016) Treating trisomies: prenatal Down’s syndrome therapies explored in mice. Nat Med 22:6–7CrossRefPubMedGoogle Scholar
  71. Lawrie CH (2013) MicroRNAs and lymphomagenesis: a functional review. Br J Haematol 160:571–581CrossRefPubMedGoogle Scholar
  72. Li L, Chang HY (2014) Physiological roles of long noncoding RNAs: insight from knockout mice. Trends Cell Biol 24:594–602CrossRefPubMedPubMedCentralGoogle Scholar
  73. Li Y, Wang H, Wang S, Quon D, Liu YW, Cordell B (2003) Positive and negative regulation of APP amyloidogenesis by sumoylation. Proc Natl Acad Sci USA 100:259–264CrossRefPubMedGoogle Scholar
  74. Li Z, Yu T, Morishima M, Pao A, LaDuca J, Conroy J, Nowak N, Matsui S, Shiraishi I, Yu YE (2007) Duplication of the entire 22.9 Mb human chromosome 21 syntenic region on mouse chromosome 16 causes cardiovascular and gastrointestinal abnormalities. Hum Mol Genet 16:1359–1366CrossRefPubMedGoogle Scholar
  75. Li W, Notani D, Ma Q, Tanasa B, Nunez E, Chen AY, Merkurjev D, Zhang J, Ohgi K, Song X, Oh S, Kim HS, Glass CK, Rosenfeld MG (2013) Functional roles of enhancer RNAs for oestrogen-dependent transcriptional activation. Nature 498:516–520CrossRefPubMedPubMedCentralGoogle Scholar
  76. Liu Z, Long X, Chao C, Yan C, Wu Q, Hua S, Zhang Y, Wu A, Fang W (2014) Knocking down CDK4 mediates the elevation of let-7c suppressing cell growth in nasopharyngeal carcinoma. BMC Cancer 14:274CrossRefPubMedPubMedCentralGoogle Scholar
  77. Lopez-Pajares V, Qu K, Zhang J, Webster DE, Barajas BC, Siprashvili Z, Zarnegar BJ, Boxer LD, Rios EJ, Tao S, Kretz M, Khavari PA (2015) A LncRNA-MAF:MAFB transcription factor network regulates epidermal differentiation. Dev Cell 32:693–706CrossRefPubMedPubMedCentralGoogle Scholar
  78. Lott IT, Doran E, Nguyen VQ, Tournay A, Head E, Gillen DL (2011) Down syndrome and dementia: a randomized, controlled trial of antioxidant supplementation. Am J Med Genet A 155A:1939–1948CrossRefPubMedPubMedCentralGoogle Scholar
  79. Louro R, Smirnova AS, Verjovski-Almeida S (2009) Long intronic noncoding RNA transcription: expression noise or expression choice? Genomics 93:291–298CrossRefPubMedGoogle Scholar
  80. Lu J, Esposito G, Scuderi C, Steardo L, Delli-Bovi LC, Hecht JL, Dickinson BC, Chang CJ, Mori T, Sheen V (2011) S100B and APP promote a gliocentric shift and impaired neurogenesis in Down syndrome neural progenitors. PLoS One 6:e22126CrossRefPubMedPubMedCentralGoogle Scholar
  81. Ma MP, Robinson PJ, Chircop M (2013) Sorting nexin 9 recruits clathrin heavy chain to the mitotic spindle for chromosome alignment and segregation. PLoS One 8:e68387CrossRefPubMedPubMedCentralGoogle Scholar
  82. Macleod MR (2014) Preclinical research: design animal studies better. Nature 510:35CrossRefPubMedGoogle Scholar
  83. Mattick JS (2003) Challenging the dogma: the hidden layer of non-protein-coding RNAs in complex organisms. BioEssays 25:930–939CrossRefPubMedGoogle Scholar
  84. Mattick JS, Makunin IV (2006) Non-coding RNA. Hum Mol Genet 15(1):R17–29CrossRefPubMedGoogle Scholar
  85. McGonigle P (2014) Animal models of CNS disorders. Biochem Pharmacol 87:140–149CrossRefPubMedGoogle Scholar
  86. McGonigle P, Ruggeri B (2014) Animal models of human disease: challenges in enabling translation. Biochem Pharmacol 87:162–171CrossRefPubMedGoogle Scholar
  87. Mercer TR, Dinger ME, Mattick JS (2009) Long non-coding RNAs: insights into functions. Nat Rev Genet 10:155–159CrossRefPubMedGoogle Scholar
  88. Meyer R, Wolf SS, Obendorf M (2007) PRMT2, a member of the protein arginine methyltransferase family, is a coactivator of the androgen receptor. J Steroid Biochem Mol Biol 107:1–14CrossRefPubMedGoogle Scholar
  89. Moore CS, Hawkins C, Franca A, Lawler A, Devenney B, Das I, Reeves RH (2010) Increased male reproductive success in Ts65Dn “Down syndrome” mice. Mamm Genome 21:543–549CrossRefPubMedPubMedCentralGoogle Scholar
  90. Mori T, Koyama N, Arendash GW, Horikoshi-Sakuraba Y, Tan J, Town T (2010) Overexpression of human S100B exacerbates cerebral amyloidosis and gliosis in the Tg2576 mouse model of Alzheimer’s disease. Glia 58:300–314PubMedPubMedCentralGoogle Scholar
  91. Nakamura A, Hattori M, Sakaki Y (1997) A novel gene isolated from human placenta located in Down syndrome critical region on chromosome 21. DNA Res 4:321–324CrossRefPubMedGoogle Scholar
  92. Nelson DL, Gibbs RA (2004) Genetics. The critical region in trisomy 21. Science 306:619–621CrossRefPubMedGoogle Scholar
  93. Ng SY, Bogu GK, Soh BS, Stanton LW (2013) The long noncoding RNA RMST interacts with SOX2 to regulate neurogenesis. Mol Cell 51:349–359CrossRefPubMedGoogle Scholar
  94. O’Doherty A, Ruf S, Mulligan C, Hildreth V, Errington ML, Cooke S, Sesay A, Modino S, Vanes L, Hernandez D, Linehan JM, Sharpe PT, Brandner S, Bliss TV, Henderson DJ, Nizetic D, Tybulewicz VL, Fisher EM (2005) An aneuploid mouse strain carrying human chromosome 21 with Down syndrome phenotypes. Science 309:2033–2037CrossRefPubMedPubMedCentralGoogle Scholar
  95. O’Leary NA, Wright MW, Brister JR, Ciufo S, Haddad D, McVeigh R, Rajput B, Robbertse B, Smith-White B, Ako-Adjei D, Astashyn A, Badretdin A, Bao Y, Blinkova O, Brover V, Chetvernin V, Choi J, Cox E, Ermolaeva O, Farrell CM, Goldfarb T, Gupta T, Haft D, Hatcher E, Hlavina W, Joardar VS, Kodali VK, Li W, Maglott D, Masterson P, McGarvey KM, Murphy MR, O’Neill K, Pujar S, Rangwala SH, Rausch D, Riddick LD, Schoch C, Shkeda A, Storz SS, Sun H, Thibaud-Nissen F, Tolstoy I, Tully RE, Vatsan AR, Wallin C, Webb D, Wu W, Landrum MJ, Kimchi A, Tatusova T, DiCuccio M, Kitts P, Murphy TD, Pruitt KD (2016) Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res 44:D733–D745CrossRefPubMedGoogle Scholar
  96. Olson LE, Richtsmeier JT, Leszl J, Reeves RH (2004) A chromosome 21 critical region does not cause specific Down syndrome phenotypes. Science 306:687–690CrossRefPubMedPubMedCentralGoogle Scholar
  97. Olson LE, Roper RJ, Sengstaken CL, Peterson EA, Aquino V, Galdzicki Z, Siarey R, Pletnikov M, Moran TH, Reeves RH (2007) Trisomy for the Down syndrome ‘critical region’ is necessary but not sufficient for brain phenotypes of trisomic mice. Hum Mol Genet 16:774–782CrossRefPubMedGoogle Scholar
  98. Pereira PL, Magnol L, Sahún I, Brault V, Duchon A, Prandini P, Gruart A, Bizot JC, Chadefaux-Vekemans B, Deutsch S, Trovero F, Delgado-García JM, Antonarakis SE, Dierssen M, Herault Y (2009) A new mouse model for the trisomy of the Abcg1-U2af1 region reveals the complexity of the combinatorial genetic code of down syndrome. Hum Mol Genet 18:4756–4769CrossRefPubMedPubMedCentralGoogle Scholar
  99. Perrin S (2014) Preclinical research: make mouse studies work. Nature 507:423–425CrossRefPubMedGoogle Scholar
  100. Petit F, Plessis G, Decamp M, Cuisset JM, Blyth M, Pendlebury M, Andrieux J (2015) 21q21 deletion involving NCAM2: report of 3 cases with neurodevelopmental disorders. Eur J Med Genet 58:44–46CrossRefPubMedGoogle Scholar
  101. Qi C, Chang J, Zhu Y, Yeldandi AV, Rao SM, Zhu YJ (2002) Identification of protein arginine methyltransferase 2 as a coactivator for estrogen receptor alpha. J Biol Chem 277:28624–28630CrossRefPubMedGoogle Scholar
  102. Quiñones-Lombraña A, Blanco JG (2015) Chromosome 21-derived hsa-miR-155-5p regulates mitochondrial biogenesis by targeting Mitochondrial Transcription Factor A (TFAM). Biochim Biophys Acta 1852:1420–1427CrossRefPubMedPubMedCentralGoogle Scholar
  103. Rahmani Z, Blouin JL, Créau-Goldberg N, Watkins PC, Mattei JF, Poissonnier M, Prieur M, Chettouh Z, Nicole A, Aurias A et al (1990) Down syndrome critical region around D21S55 on proximal 21q22.3. Am J Med Genet Suppl 7:98–103PubMedGoogle Scholar
  104. Ramos AD, Attenello FJ, Lim DA (2015) Uncovering the roles of long noncoding RNAs in neural development and glioma progression. Neurosci Lett S0304–3940:30316-5Google Scholar
  105. Reeves R, Irving N, Moran T, Wohn A, Kitt C, Sisodia S, Schmidt C, Bronson R, Davisson MT (1995) A mouse model for Down Syndrome exhibits learning and behaviour deficits. Nat Genet 11:177–184CrossRefPubMedGoogle Scholar
  106. Rogers MA, Langbein L, Winter H, Ehmann C, Praetzel S, Schweizer J (2002) Characterization of a first domain of human high glycine-tyrosine and high sulfur keratin-associated protein (KAP) genes on chromosome 21q22.1. J Biol Chem 277:48993–49002CrossRefPubMedGoogle Scholar
  107. Rogers MA, Langbein L, Praetzel-Wunder S, Winter H, Schweizer J (2006) Human hair keratin-associated proteins (KAPs). Int Rev Cytol 251:209–263CrossRefPubMedGoogle Scholar
  108. Rosenbloom KR, Sloan CA, Malladi VS, Dreszer TR, Learned K, Kirkup VM, Wong MC, Maddren M, Fang R, Heitner SG, Lee BT, Barber GP, Harte RA, Diekhans M, Long JC, Wilder SP, Zweig AS, Karolchik D, Kuhn RM, Haussler D, Kent WJ (2013) ENCODE data in the UCSC Genome Browser: year 5 update. Nucleic Acids Res 41:D56–D63CrossRefPubMedGoogle Scholar
  109. Rueda N, Flórez J, Martínez-Cué C (2012) Mouse models of Down syndrome as a tool to unravel the causes of mental disabilities. Neural Plast 2012:584071PubMedPubMedCentralGoogle Scholar
  110. Saghatelian A, Couso JP (2015) Discovery and characterization of smORF-encoded bioactive polypeptides. Nat Chem Biol 11:909–916CrossRefPubMedGoogle Scholar
  111. Sago H, Carlson EJ, Smith DJ, Kilbridge J, Rubin EM, Mobley WC, Epstein CJ, Huang TT (1998) Ts1Cje, a partial trisomy 16 mouse model for Down syndrome, exhibits learning and behavioral abnormalities. Proc Natl Acad Sci USA. 95:6256–6261CrossRefPubMedPubMedCentralGoogle Scholar
  112. Salehi A, Delcroix JD, Belichenko PV, Zhan K, Wu C, Valletta JS, Takimoto-Kimura R, Kleschevnikov AM, Sambamurti K, Chung PP, Xia W, Villar A, Campbell WA, Kulnane LS, Nixon RA, Lamb BT, Epstein CJ, Stokin GB, Goldstein LS, Mobley WC (2006) Increased App expression in a mouse model of Down’s syndrome disrupts NGF transport and causes cholinergic neuron degeneration. Neuron 51:29–42CrossRefPubMedGoogle Scholar
  113. Sauvageau M, Goff LA, Lodato S, Bonev B, Groff AF, Gerhardinger C, Sanchez-Gomez DB, Hacisuleyman E, Li E, Spence M, Liapis SC, Mallard W, Morse M, Swerdel MR, D’Ecclessis MF, Moore JC, Lai V, Gong G, Yancopoulos GD, Frendewey D, Kellis M, Hart RP, Valenzuela DM, Arlotta P, Rinn JL (2013) Multiple knockout mouse models reveal lincRNAs are required for life and brain development. Elife 2:e01749CrossRefPubMedPubMedCentralGoogle Scholar
  114. Shi HS, Yin X, Song L, Guo QJ, Luo XH (2012) Neuropeptide Trefoil factor 3 improves learning and retention of novel object recognition memory in mice. Behav Brain Res 227:265–269CrossRefPubMedGoogle Scholar
  115. Shin N, Lee S, Ahn N, Kim SA, Ahn SG, YongPark Z, Chang S (2007) Sorting nexin 9 interacts with dynamin 1 and N-WASP and coordinates synaptic vesicle endocytosis. J Biol Chem 282:28939–28950CrossRefPubMedGoogle Scholar
  116. Siarey RJ, Villar AJ, Epstein CJ, Galdzicki Z (2005) Abnormal synaptic plasticity in the Ts1Cje segmental trisomy 16 mouse model of Down syndrome. Neuropharmacology 49:122–128CrossRefPubMedGoogle Scholar
  117. Smith CM, Steitz JA (1998) Classification of gas5 as a multi-small-nucleolar-RNA (snoRNA) host gene and a member of the 5′-terminal oligopyrimidine gene family reveals common features of snoRNA host genes. Mol Cell Biol 18:6897–6909CrossRefPubMedPubMedCentralGoogle Scholar
  118. Song J, Lee JE (2015) miR-155 is involved in Alzheimer’s disease by regulating T lymphocyte function. Front Aging Neurosci 7:61CrossRefPubMedPubMedCentralGoogle Scholar
  119. Souchet B, Guedj F, Penke-Verdier Z, Daubigney F, Duchon A, Herault Y, Bizot JC, Janel N, Créau N, Delatour B, Delabar JM (2015) Pharmacological correction of excitation/inhibition imbalance in Down syndrome mouse models. Front Behav Neurosci 9:267CrossRefPubMedPubMedCentralGoogle Scholar
  120. Starbuck JM, Dutka T, Ratliff TS, Reeves RH, Richtsmeier JT (2014) Overlapping trisomies for human chromosome 21 orthologs produce similar effects on skull and brain morphology of Dp(16)1Yey and Ts65Dn mice. Am J Med Genet A 164A:1981–1990CrossRefPubMedGoogle Scholar
  121. Sturgeon X, Gardiner KJ (2011) Transcript catalogs of human chromosome 21 and orthologous chimpanzee and mouse regions. Mamm Genome 22:261–271CrossRefPubMedGoogle Scholar
  122. Sturgeon X, Le T, Ahmed MM, Gardiner KJ (2012) Pathways to cognitive deficits in Down syndrome. Prog Brain Res 197:73–100CrossRefPubMedGoogle Scholar
  123. Su X, Zhu G, Ding X, Lee SY, Dou Y, Zhu B, Wu W, Li H (2014) Molecular basis underlying histone H3 lysine-arginine methylation pattern readout by Spin/Ssty repeats of Spindlin1. Genes Dev 28:622–636CrossRefPubMedPubMedCentralGoogle Scholar
  124. Tomaselli S, Bonamassa B, Alisi A, Nobili V, Locatelli F, Gallo A (2013) ADAR enzyme and miRNA story: a nucleotide that can make the difference. Int J Mol Sci 14:22796–22816CrossRefPubMedPubMedCentralGoogle Scholar
  125. Vance KW, Ponting CP (2014) Transcriptional regulatory functions of nuclear long noncoding RNAs. Trends Genet 30:348–355CrossRefPubMedPubMedCentralGoogle Scholar
  126. Verma S, Quillinan N, Yang YF, Nakayama S, Cheng J, Kelley MH, Herson PS (2012) TRPM2 channel activation following in vitro ischemia contributes to male hippocampal cell death. Neurosci Lett 530:41–46CrossRefPubMedPubMedCentralGoogle Scholar
  127. Vidal V, García S, Martínez P, Corrales A, Flórez J, Rueda N, Sharma A, Martínez-Cué C (2012) Lack of behavioral and cognitive effects of chronic ethosuximide and gabapentin treatment in the Ts65Dn mouse model of Down syndrome. Neuroscience 220:158–168CrossRefPubMedGoogle Scholar
  128. Warth SC, Hoefig KP, Hiekel A, Schallenberg S, Jovanovic K, Klein L, Kretschmer K, Ansel KM, Heissmeyer V (2015) Induced miR-99a expression represses Mtor cooperatively with miR-150 to promote regulatory T-cell differentiation. EMBO J 34:1195–1213CrossRefPubMedPubMedCentralGoogle Scholar
  129. White R, Morganstein D, Christian M, Seth A, Herzog B, Parker MG (2008) Role of RIP140 in metabolic tissues: connections to disease. FEBS Lett 582:39–45CrossRefPubMedGoogle Scholar
  130. Winkler GS (2010) The mammalian anti-proliferative BTG/Tob protein family. J Cell Physiol 222:66–72CrossRefPubMedGoogle Scholar
  131. Winocur G, Roder J, Lobaugh N (2001) Learning and memory in S100-beta transgenic mice: an analysis of impaired and preserved function. Neurobiol Learn Mem 75:230–243CrossRefPubMedGoogle Scholar
  132. Winther M, Berezin V, Walmod PS (2012) NCAM2/OCAM/RNCAM: cell adhesion molecule with a role in neuronal compartmentalization. Int J Biochem Cell Biol 44:441–446CrossRefPubMedGoogle Scholar
  133. Worby CA, Simonson-Leff N, Clemens JC, Kruger RP, Muda M, Dixon JE (2001) The sorting nexin, DSH3PX1, connects the axonal guidance receptor, Dscam, to the actin cytoskeleton. J Biol Chem 276:41782–41789CrossRefPubMedGoogle Scholar
  134. Wu N, Lin X, Zhao X, Zheng L, Xiao L, Liu J, Ge L, Cao S (2013) MiR-125b acts as an oncogene in glioblastoma cells and inhibits cell apoptosis through p53 and p38MAPK-independent pathways. Br J Cancer 109:2853–2863CrossRefPubMedPubMedCentralGoogle Scholar
  135. Wu D, Zhou Y, Pan H, Qu P, Zhou J (2015) microRNA 99a inhibits cell proliferation, colony formation ability, migration and invasion by targeting fibroblast growth factor receptor 3 in prostate cancer. Mol Med Rep. 11:1469–1475PubMedGoogle Scholar
  136. Xie YF, Belrose JC, Lei G, Tymianski M, Mori Y, Macdonald JF, Jackson MF (2011) Dependence of NMDA/GSK-3β mediated metaplasticity on TRPM2 channels at hippocampal CA3-CA1 synapses. Mol Brain 4:44CrossRefPubMedPubMedCentralGoogle Scholar
  137. Xu Y, Zhang HT, O’Donnell JM (2011) Phosphodiesterases in the central nervous system: implications in mood and cognitive disorders. Handb Exp Pharmacol 204:447–485CrossRefGoogle Scholar
  138. Yang DS, Stavrides P, Mohan PS, Kaushik S, Kumar A, Ohno M, Schmidt SD, Wesson DW, Bandyopadhyay U, Jiang Y, Pawlik M, Peterhoff CM, Yang AJ, Wilson DA, St George-Hyslop P, Westaway D, Mathews PM, Levy E, Cuervo AM, Nixon RA (2011) Therapeutic effects of remediating autophagy failure in a mouse model of Alzheimer disease by enhancing lysosomal proteolysis. Autophagy 7:788–789CrossRefPubMedPubMedCentralGoogle Scholar
  139. Yang QG, Wang F, Zhang Q, Xu WR, Chen YP, Chen GH (2012) Correlation of increased hippocampal Sumo3 with spatial learning ability in old C57BL/6 mice. Neurosci Lett 518:75–79CrossRefPubMedGoogle Scholar
  140. Yang Z, Han Y, Cheng K, Zhang G, Wang X (2014) miR-99a directly targets the mTOR signalling pathway in breast cancer side population cells. Cell Prolif 47:587–595CrossRefPubMedGoogle Scholar
  141. Yu X, Li Z (2015) Long non-coding RNA growth arrest-specific transcript 5 in tumor biology. Oncol Lett 10:1953–1958PubMedPubMedCentralGoogle Scholar
  142. Yu H et al (2005) TCP10L is expressed specifically in spermatogenic cells and binds to death associated protein kinase-3. Int J Androl 28:163–170CrossRefPubMedGoogle Scholar
  143. Yu T, Li Z, Jia Z, Clapcote SJ, Liu C, Li S, Asrar S, Pao A, Chen R, Fan N, Carattini-Rivera S, Bechard AR, Spring S, Henkelman RM, Stoica G, Matsui S, Nowak NJ, Roder JC, Chen C, Bradley A, Yu YE (2010a) A mouse model of Down syndrome trisomic for all human chromosome 21 syntenic regions. Hum Mol Genet 19:2780–2791CrossRefPubMedPubMedCentralGoogle Scholar
  144. Yu T, Liu C, Belichenko P, Clapcote SJ, Li S, Pao A, Kleschevnikov A, Bechard AR, Asrar S, Chen R, Fan N, Zhou Z, Jia Z, Chen C, Roder JC, Liu B, Baldini A, Mobley WC, Yu YE (2010b) Effects of individual segmental trisomies of human chromosome 21 syntenic regions on hippocampal long-term potentiation and cognitive behaviors in mice. Brain Res 1366:162–171CrossRefPubMedPubMedCentralGoogle Scholar
  145. Yu SH, Zhang CL, Dong FS, Zhang YM (2015) miR-99a suppresses the metastasis of human non-small cell lung cancer cells by targeting AKT1 signaling pathway. J Cell Biochem 116:268–276CrossRefPubMedGoogle Scholar
  146. Zenaro E, Pietronigro E, Bianca VD, Piacentino G, Marongiu L, Budui S, Turano E, Rossi B, Angiari S, Dusi S, Montresor A, Carlucci T, Nanì S, Tosadori G, Calciano L, Catalucci D, Berton G, Bonetti B, Constantin G (2015) Neutrophils promote Alzheimer’s disease-like pathology and cognitive decline via LFA-1 integrin. Nat Med 21:880–886CrossRefPubMedGoogle Scholar
  147. Zhang L, Meng K, Jiang X, Liu C, Pao A, Belichenko PV, Kleschevnikov AM, Josselyn S, Liang P, Ye P, Mobley WC, Yu YE (2014) Human chromosome 21 orthologous region on mouse chromosome 17 is a major determinant of Down syndrome-related developmental cognitive deficits. Hum Mol Genet 23:578–589CrossRefPubMedGoogle Scholar
  148. Zhao B, Han H, Chen J, Zhang Z, Li S, Fang F, Zheng Q, Ma Y, Zhang J, Wu N, Yang Y (2014) MicroRNA let-7c inhibits migration and invasion of human non-small cell lung cancer by targeting ITGB3 and MAP4K3. Cancer Lett 342:43–51CrossRefPubMedGoogle Scholar
  149. Zheng Z, Cai C, Omwancha J, Chen S-Y, Baslan T, Shemshedini L (2006) SUMO-3 enhances androgen receptor transcriptional activity through a sumoylation-independent mechanism in prostate cancer cells. J Biol Chem 281:4002–4012CrossRefPubMedGoogle Scholar
  150. Zhou B, Cai Q, Xie Y, Sheng ZH (2012) Snapin recruits dynein to BDNF-TrkB signaling endosomes for retrograde axonal transport and is essential for dendrite growth of cortical neurons. Cell Rep 2:42–51CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Meenal Gupta
    • 1
  • A. Ranjitha Dhanasekaran
    • 1
  • Katheleen J. Gardiner
    • 1
    • 2
    • 3
    Email author
  1. 1.Department of Pediatrics, Linda Crnic Institute for Down SyndromeUniversity of Colorado Denver School of MedicineAuroraUSA
  2. 2.Department of Biochemistry and Molecular BiologyUniversity of Colorado Denver School of MedicineAuroraUSA
  3. 3.Human Medical Genetics and Genomics, and Neuroscience ProgramsUniversity of Colorado Denver School of MedicineAuroraUSA

Personalised recommendations