Advertisement

Mammalian Genome

, Volume 27, Issue 5–6, pp 246–255 | Cite as

Genome-wide association study identifies loci and candidate genes for meat quality traits in Simmental beef cattle

  • Jiangwei Xia
  • Xin Qi
  • Yang Wu
  • Bo Zhu
  • Lingyang Xu
  • Lupei Zhang
  • Xue Gao
  • Yan Chen
  • Junya LiEmail author
  • Huijiang GaoEmail author
Article

Abstract

Improving meat quality is the best way to enhance profitability and strengthen competitiveness in beef industry. Identification of genetic variants that control beef quality traits can help breeders design optimal breeding programs to achieve this goal. We carried out a genome-wide association study for meat quality traits in 1141 Simmental cattle using the Illumina Bovine HD 770K SNP array to identify the candidate genes and genomic regions associated with meat quality traits for beef cattle, including fat color, meat color, marbling score, longissimus muscle area, and shear force. In our study, we identified twenty significant single-nucleotide polymorphisms (SNPs) (p < 1.47 × 10−6) associated with these five meat quality traits. Notably, we observed several SNPs were in or near eleven genes which have been reported previously, including TMEM236, SORL1, TRDN, S100A10, AP2S1, KCTD16, LOC506594, DHX15, LAMA4, PREX1, and BRINP3. We identified a haplotype block on BTA13 containing five significant SNPs associated with fat color trait. We also found one of 19 SNPs was associated with multiple traits (shear force and longissimus muscle area) on BTA7. Our results offer valuable insights to further explore the potential mechanism of meat quality traits in Simmental beef cattle.

Keywords

Principle Component Analysis Meat Quality Significant SNPs Meat Quality Trait Meat Color 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was supported by Cattle Breeding Innovative Research Team (cxgc-ias-03), the 12th “Five-Year” National Science and Technology Support Project (2011BAD28B04) Basic Research Fund Program, the National High Technology Research and Development Program of China (863 Program 2013AA102505-4), Chinese Academy of Agricultural Sciences Fundamental Research Budget Increment Projects (2013ZL031 and 2014ZL006), Chinese Academy of Agricultural Sciences Foundation (2014ywf-yb-4), Beijing Natural Science Foundation (6154032), and the National Natural Science Foundations of China (31472079, 31372294, 31402039 and 31201774).

Author Contributions

HJG and JYL conceived and designed the experiments. JWX and QX conducted the experiments. BZ and YW analyzed the data. XG, YC, LPZ, and LYX helped conduct the experiments. HJG and JYL supervised the study. JWX wrote the manuscript. All authors have read and approved the final manuscript

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Ahnström ML, Enfält A-C, Hansson I, Lundström K (2006) Pelvic suspension improves quality characteristics in M. semimembranosus from Swedish dual purpose young bulls. Meat Sci 72:555–559CrossRefPubMedGoogle Scholar
  2. Barrett JC, Fry B, Maller J, Daly MJ (2005) Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics (Oxford) 21:263–265CrossRefGoogle Scholar
  3. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B (Methodological) 57:289–300Google Scholar
  4. Bolormaa S, Neto LR, Zhang YD, Bunch RJ, Harrison BE, Goddard ME, Barendse W (2011) A genome-wide association study of meat and carcass traits in Australian cattle. J Anim Sci 89:2297–2309CrossRefPubMedGoogle Scholar
  5. Casas E, Stone RT, Keele JW, Shackelford SD, Kappes SM, Koohmaraie M (2001) A comprehensive search for quantitative trait loci affecting growth and carcass composition of cattle segregating alternative forms of the myostatin gene. J Anim Sci 79:854–860PubMedGoogle Scholar
  6. Cesar A, Regitano L, Mourao G, Tullio R, Lanna D, Nassu R, Mudado M, Oliveira P, do Nascimento M, Chaves A, Alencar M, Sonstegard T, Garrick D, Reecy J, Coutinho L (2014a) Genome-wide association study for intramuscular fat deposition and composition in Nellore cattle. BMC Genet. doi: 10.1186/1471-2156-15-39 Google Scholar
  7. Cesar A, Regitano L, Mourao G, Tullio R, Lanna D, Nassu R, Mudado M, Oliveira P, do Nascimento M, Chaves A, Alencar M, Sonstegard T, Garrick D, Reecy J, Coutinho L (2014b) Genome-wide association study for intramuscular fat deposition and composition in Nellore cattle. BMC Genet. doi: 10.1186/1471-2156-15-39 Google Scholar
  8. Cline JL, Beckie TM (2013) The relationships between FAM5C SNP (rs10920501) variability and metabolic syndrome and inflammation in women with coronary heart disease. Biological research for nursing 15:160–166CrossRefPubMedPubMedCentralGoogle Scholar
  9. Culler RD, Parrish FC, Smith GC, Cross HR (1978) Relationship of myofibril fragmentation index to certain chemical, physical and sensory characteristics of bovine longissimus muscle. J Food Sci 43:1177–1180CrossRefGoogle Scholar
  10. Goddard ME, Hayes BJ (2009) Mapping genes for complex traits in domestic animals and their use in breeding programmes. Nat Rev Genet 10:381–391CrossRefPubMedGoogle Scholar
  11. Gutiérrez-Gil B, Williams JL, Homer D, Burton D, Haley CS, Wiener P (2009) Search for quantitative trait loci affecting growth and carcass traits in a cross population of beef and dairy cattle. J Anim Sci 87:24–36CrossRefPubMedGoogle Scholar
  12. Gutiérrez-Gil B, Wiener P, Williams JL, Haley CS (2012) Investigation of the genetic architecture of a bone carcass weight QTL on BTA6. Anim Genet 43:654–661CrossRefPubMedGoogle Scholar
  13. Ishii A, Yamaji K, Uemoto Y, Sasago N, Kobayashi E, Kobayashi N, Matsuhashi T, Maruyama S, Matsumoto H, Sasazaki S, Mannen H (2013) Genome-wide association study for fatty acid composition in Japanese Black cattle. Anim Sci J 84:675–682PubMedGoogle Scholar
  14. Jin C, Zhang L, Xian Y, Liu X, Wu Y, Zhang F, Zhu J, Zhang G, Chen C, Gong R, Yuan J, Tian L, Wang G, Cheng Z (2014) The SORL1 polymorphism rs985421 may confer the risk for amnestic mild cognitive impairment and Alzheimer’s disease in the Han Chinese population. Neurosci Lett 563:80–84CrossRefPubMedGoogle Scholar
  15. Kamatani Y, Matsuda K, Okada Y, Kubo M, Hosono N, Daigo Y, Nakamura Y, Kamatani N (2010) Genome-wide association study of hematological and biochemical traits in a Japanese population. Nat Genet 42:210–215CrossRefPubMedGoogle Scholar
  16. Kenne E, Soehnlein O, Genove G, Rotzius P, Eriksson EE, Lindbom L (2010) Immune cell recruitment to inflammatory loci is impaired in mice deficient in basement membrane protein laminin alpha4. J Leukoc Biol 88:523–528PubMedGoogle Scholar
  17. Kim Y, Ryu J, Woo J, Kim JB, Kim CY, Lee C (2011) Genome-wide association study reveals five nucleotide sequence variants for carcass traits in beef cattle. Anim Genet 42:361–365CrossRefPubMedGoogle Scholar
  18. Kirchhefer U, Neumann J, Baba HA, Begrow F, Kobayashi YM, Reinke U, Schmitz W, Jones LR (2001) Cardiac hypertrophy and impaired relaxation in transgenic mice overexpressing triadin 1. J Biol Chem 276:4142–4149CrossRefPubMedGoogle Scholar
  19. Kogelman LJ, Zhernakova DV, Westra HJ, Cirera S, Fredholm M, Franke L, Kadarmideen HN (2015) An integrative systems genetics approach reveals potential causal genes and pathways related to obesity. Genome Med 7:105CrossRefPubMedPubMedCentralGoogle Scholar
  20. Küchenmeister U, Nürnberg K, Fiedler I, Kuhn G, Nürnberg G, Ender K (1999) Cell injury and meat quality of pig in the time period post mortem from two genotypes susceptible or resistant to malignant hyperthermia. Eur Food Res Technol 209:97–103CrossRefGoogle Scholar
  21. Lambert AS, Grybek V, Francou B, Esterle L, Bertrand G, Bouligand J, Guiochon-Mantel A, Hieronimus S, Voitel D, Soskin S, Magdelaine C, Lienhardt A, Silve C, Linglart A (2014) Analysis of AP2S1, a calcium-sensing receptor regulator, in familial and sporadic isolated hypoparathyroidism. J Clin Endocrinol Metab 99:E469–E473CrossRefPubMedGoogle Scholar
  22. Lipka AE, Tian F, Wang Q, Peiffer J, Li M, Bradbury PJ, Gore MA, Buckler ES, Zhang Z (2012) GAPIT: genome association and prediction integrated tool. Bioinformatics (Oxford, England) 28, 2397-2399Google Scholar
  23. Lu H, Lu N, Weng L, Yuan B, Liu YJ, Zhang Z (2014) DHX15 senses double-stranded RNA in myeloid dendritic cells. J Immunol 193:1364–1372CrossRefPubMedPubMedCentralGoogle Scholar
  24. McClure MC, Morsci NS, Schnabel RD, Kim JW, Yao P, Rolf MM, McKay SD, Gregg SJ, Chapple RH, Northcutt SL, Taylor JF (2010) A genome scan for quantitative trait loci influencing carcass, post-natal growth and reproductive traits in commercial Angus cattle. Anim Genet 41:597–607CrossRefPubMedGoogle Scholar
  25. McClure MC, Ramey HR, Rolf MM, McKay SD, Decker JE, Chapple RH, Kim JW, Taxis TM, Weaber RL, Schnabel RD, Taylor JF (2012) Genome-wide association analysis for quantitative trait loci influencing Warner-Bratzler shear force in five taurine cattle breeds. Anim Genet 43:662–673CrossRefPubMedPubMedCentralGoogle Scholar
  26. Meredith BK, Kearney FJ, Finlay EK, Bradley DG, Fahey AG, Berry DP, Lynn DJ (2012) Genome-wide associations for milk production and somatic cell score in Holstein-Friesian cattle in Ireland. BMC Genet 13:21CrossRefPubMedPubMedCentralGoogle Scholar
  27. Monsón F, Sañudo C, Sierra I (2004) Influence of cattle breed and ageing time on textural meat quality. Meat Sci 68:595–602CrossRefPubMedGoogle Scholar
  28. Morris CA, Bottema CD, Cullen NG, Hickey SM, Esmailizadeh AK, Siebert BD, Pitchford WS (2010) Quantitative trait loci for organ weights and adipose fat composition in Jersey and Limousin back-cross cattle finished on pasture or feedlot. Anim Genet 41:589–596CrossRefPubMedGoogle Scholar
  29. Nakagawa S (2004) A farewell to Bonferroni: the problems of low statistical power and publication bias. Behav Ecol 15:1044–1045CrossRefGoogle Scholar
  30. Nalaila SM, Stothard P, Moore SS, Li C, Wang Z (2012) Whole-genome QTL scan for ultrasound and carcass merit traits in beef cattle using Bayesian shrinkage method. J Anim Breed Genet 129:107–119CrossRefPubMedGoogle Scholar
  31. Nattrass GS, Cafe LM, McIntyre BL, Gardner GE, McGilchrist P, Robinson DL, Wang YH, Pethick DW, Greenwood PL (2014) A post-transcriptional mechanism regulates calpastatin expression in bovine skeletal muscle. J Anim Sci 92:443–455CrossRefPubMedGoogle Scholar
  32. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, Maller J, Sklar P, de Bakker PI, Daly MJ, Sham PC (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81:559–575CrossRefPubMedPubMedCentralGoogle Scholar
  33. Purchas RW, Burnham DL, Morris ST (2002) Effects of growth potential and growth path on tenderness of beef longissimus muscle from bulls and steers. J Anim Sci 80:3211–3221PubMedGoogle Scholar
  34. Ribeiro FV, Santos VR, Bastos MF, De Miranda TS, Vieira AR, De Figueiredo LC, Duarte PM (2012) A preliminary study on the FAM5C expression in generalized chronic periodontitis. Oral Dis 18:147–152CrossRefPubMedGoogle Scholar
  35. Roeber DL, Cannell RC, Belk KE, Tatum JD, Smith GC (2000) Effects of a unique application of electrical stimulation on tenderness, color, and quality attributes of the beef longissimus muscle. J Anim Sci 78:1504–1509PubMedGoogle Scholar
  36. Samuel MA, Valdez G, Tapia JC, Lichtman JW, Sanes JR (2012) Agrin and synaptic laminin are required to maintain adult neuromuscular junctions. PLoS ONE 7:e46663CrossRefPubMedPubMedCentralGoogle Scholar
  37. Scanga JA, Belk KE, Tatum JD, Grandin T, Smith GC (1998) Factors contributing to the incidence of dark cutting beef. J Anim Sci 76:2040–2047PubMedGoogle Scholar
  38. Solovieff N, Cotsapas C, Lee PH, Purcell SM, Smoller JW (2013) Pleiotropy in complex traits: challenges and strategies. Nat Rev Genet 14:483–495CrossRefPubMedPubMedCentralGoogle Scholar
  39. Sosa MS, Lopez-Haber C, Yang C, Wang H, Lemmon MA, Busillo JM, Luo J, Benovic JL, Klein-Szanto A, Yagi H, Gutkind JS, Parsons RE, Kazanietz MG (2010) Identification of the Rac-GEF P-Rex1 as an essential mediator of ErbB signaling in breast cancer. Mol Cell 40:877–892CrossRefPubMedPubMedCentralGoogle Scholar
  40. Strillacci MG, Frigo E, Schiavini F, Samore AB, Canavesi F, Vevey M, Cozzi MC, Soller M, Lipkin E, Bagnato A (2014) Genome-wide association study for somatic cell score in Valdostana Red Pied cattle breed using pooled DNA. BMC Genet 15:106CrossRefPubMedPubMedCentralGoogle Scholar
  41. Sun Y, Liu R, Zhao G, Zheng M, Sun Y, Yu X, Li P, Wen J (2014) Genome-wide linkage analysis and association study identifies loci for polydactyly in chickens. G3 (Bethesda) 4:1167–1172CrossRefGoogle Scholar
  42. Takasuga A, Watanabe T, Mizoguchi Y, Hirano T, Ihara N, Takano A, Yokouchi K, Fujikawa A, Chiba K, Kobayashi N, Tatsuda K, Oe T, Furukawa-Kuroiwa M, Nishimura-Abe A, Fujita T, Inoue K, Mizoshita K, Ogino A, Sugimoto Y (2007) Identification of bovine QTL for growth and carcass traits in Japanese Black cattle by replication and identical-by-descent mapping. Mamm Genome 18:125–136CrossRefPubMedGoogle Scholar
  43. Tanaka K, Matsumoto E, Higashimaki Y, Sugimoto T, Seino S, Kaji H (2012) FAM5C is a soluble osteoblast differentiation factor linking muscle to bone. Biochem Biophys Res Commun 418:134–139CrossRefPubMedGoogle Scholar
  44. Tian R, Cullen NG, Morris CA, Fisher PJ, Pitchford WS, Bottema CD (2012) Major effect of retinal short-chain dehydrogenase reductase (RDHE2) on bovine fat colour. Mamm Genome 23:378–386CrossRefPubMedGoogle Scholar
  45. Tizioto PC, Gromboni CF, Nogueira AR, de Souza MM, Mudadu Mde A, Tholon P, Rosa Ado N, Tullio RR, Medeiros SR, Nassu RT, Regitano LC (2014) Calcium and potassium content in beef: influences on tenderness and associations with molecular markers in Nellore cattle. Meat Sci 96:436–440CrossRefPubMedGoogle Scholar
  46. VanRaden PM (2008) Efficient Methods to Compute Genomic Predictions. J Dairy Sci 91:4414–4423CrossRefPubMedGoogle Scholar
  47. Visscher PM, Brown MA, McCarthy MI, Yang J (2012) Five years of GWAS discovery. Am J Hum Genet 90:7–24CrossRefPubMedPubMedCentralGoogle Scholar
  48. Warren KJ, Iwami D, Harris DG, Bromberg JS, Burrell BE (2014) Laminins affect T cell trafficking and allograft fate. J Clin Investig 124:2204–2218CrossRefPubMedPubMedCentralGoogle Scholar
  49. Weng Z, Su H, Saatchi M, Lee J, Thomas MG, Dunkelberger JR, Garrick DJ (2016) Genome-wide association study of growth and body composition traits in Brangus beef cattle. Livest Sci 183:4–11CrossRefGoogle Scholar
  50. Wood JD, Enser M, Fisher AV, Nute GR, Sheard PR, Richardson RI, Hughes SI, Whittington FM (2008) Fat deposition, fatty acid composition and meat quality: a review. Meat Sci 78:343–358CrossRefPubMedGoogle Scholar
  51. Wu Y, Fan H, Wang Y, Zhang L, Gao X, Chen Y, Li J, Ren H, Gao H (2014) Genome-wide association studies using haplotypes and individual SNPs in Simmental cattle. PLoS ONE 9:e109330CrossRefPubMedPubMedCentralGoogle Scholar
  52. Xie T, Deng L, Mei P, Zhou Y, Wang B, Zhang J, Lin J, Wei Y, Zhang X, Xu R (2014) Genome-wide association study combining pathway analysis for typical sporadic amyotrophic lateral sclerosis in Chinese Han populations. Neurobiol Aging 35:1778 e1779–1778 e1723CrossRefGoogle Scholar
  53. Xiong X, Liu X, Zhou L, Yang J, Yang B, Ma H, Xie X, Huang Y, Fang S, Xiao S, Ren J, Chen C, Ma J, Huang L (2015) Genome-wide association analysis reveals genetic loci and candidate genes for meat quality traits in Chinese Laiwu pigs. Mamm Genome 26:181–190CrossRefPubMedGoogle Scholar
  54. Xue X, Zhang M, Lin Y, Xu E, Jia J (2014) Association between the SORL1 rs2070045 polymorphism and late-onset Alzheimer’s disease: interaction with the ApoE genotype in the Chinese Han population. Neurosci Lett 559:94–98CrossRefPubMedGoogle Scholar
  55. Yamashita H, Goto C, Tajima R, Koparal AT, Kobori M, Ohki Y, Shitara K, Narita R, Toriyama K, Torii S, Niimi T, Kitagawa Y (2008) Cryptic fragment alpha4 LG4-5 derived from laminin alpha4 chain inhibits de novo adipogenesis by modulating the effect of fibroblast growth factor-2. Dev Growth Differ 50:97–107CrossRefPubMedGoogle Scholar
  56. Yang A, Lanari MC, Brewster M, Tume RK (2002) Lipid stability and meat colour of beef from pasture- and grain-fed cattle with or without vitamin E supplement. Meat Sci 60:41–50CrossRefPubMedGoogle Scholar
  57. Yang W, Guo Z, Huang C, Duan L, Chen G, Jiang N, Fang W, Feng H, Xie W, Lian X, Wang G, Luo Q, Zhang Q, Liu Q, Xiong L (2014) Combining high-throughput phenotyping and genome-wide association studies to reveal natural genetic variation in rice. Nat Commun 5:5087CrossRefPubMedPubMedCentralGoogle Scholar
  58. Zhang Z, Ersoz E, Lai C-Q, Todhunter RJ, Tiwari HK, Gore MA, Bradbury PJ, Yu J, Arnett DK, Ordovas JM, Buckler ES (2010) Mixed linear model approach adapted for genome-wide association studies. Nat Genet 42:355–360CrossRefPubMedPubMedCentralGoogle Scholar
  59. Zhang L, Liu J, Zhao F, Ren H, Xu L, Lu J, Zhang S, Zhang X, Wei C, Lu G (2013) Genome-wide association studies for growth and meat production traits in sheep. PLoS ONE 8:e66569CrossRefPubMedPubMedCentralGoogle Scholar
  60. Zhou Z, Sheng X, Zhang Z, Zhao K, Zhu L, Guo G, Friedenberg SG, Hunter LS, Vandenberg-Foels WS, Hornbuckle WE, Krotscheck U, Corey E, Moise NS, Dykes NL, Li J, Xu S, Du L, Wang Y, Sandler J, Acland GM, Lust G, Todhunter RJ (2010) Differential Genetic Regulation of Canine Hip Dysplasia and Osteoarthritis. PLoS ONE 5:e13219CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Jiangwei Xia
    • 1
  • Xin Qi
    • 1
  • Yang Wu
    • 1
  • Bo Zhu
    • 1
  • Lingyang Xu
    • 1
  • Lupei Zhang
    • 1
  • Xue Gao
    • 1
  • Yan Chen
    • 1
  • Junya Li
    • 1
    Email author
  • Huijiang Gao
    • 1
    Email author
  1. 1.Institute of Animal ScienceChinese Academy of Agricultural ScienceBeijingChina

Personalised recommendations