Advertisement

Mammalian Genome

, Volume 27, Issue 5–6, pp 179–190 | Cite as

Mouse genome-wide association study identifies polymorphisms on chromosomes 4, 11, and 15 for age-related cardiac fibrosis

  • Qiaoli Li
  • Annerose Berndt
  • Beth A. Sundberg
  • Kathleen A. Silva
  • Victoria E. Kennedy
  • Clinton L. Cario
  • Matthew A. Richardson
  • Thomas H. Chase
  • Paul N. Schofield
  • Jouni Uitto
  • John P. Sundberg
Article

Abstract

Dystrophic cardiac calcinosis (DCC), also called epicardial and myocardial fibrosis and mineralization, has been detected in mice of a number of laboratory inbred strains, most commonly C3H/HeJ and DBA/2J. In previous mouse breeding studies between these DCC susceptible and the DCC-resistant strain C57BL/6J, 4 genetic loci harboring genes involved in DCC inheritance were identified and subsequently termed Dyscalc loci 1 through 4. Here, we report susceptibility to cardiac fibrosis, a sub-phenotype of DCC, at 12 and 20 months of age and close to natural death in a survey of 28 inbred mouse strains. Eight strains showed cardiac fibrosis with highest frequency and severity in the moribund mice. Using genotype and phenotype information of the 28 investigated strains, we performed genome-wide association studies (GWAS) and identified the most significant associations on chromosome (Chr) 15 at 72 million base pairs (Mb) (P < 10−13) and Chr 4 at 122 Mb (P < 10−11) and 134 Mb (P < 10−7). At the Chr 15 locus, Col22a1 and Kcnk9 were identified. Both have been reported to be morphologically and functionally important in the heart muscle. The strongest Chr 4 associations were located approximately 6 Mb away from the Dyscalc 2 quantitative trait locus peak within the boundaries of the Extl1 gene and in close proximity to the Trim63 and Cap1 genes. In addition, a single-nucleotide polymorphism association was found on chromosome 11. This study provides evidence for more than the previously reported 4 genetic loci determining cardiac fibrosis and DCC. The study also highlights the power of GWAS in the mouse for dissecting complex genetic traits.

Keywords

Quantitative Trait Locus Inbred Strain Cardiac Fibrosis Inbred Mouse Strain Ventricular Free Wall 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors thank Jesse Hammer and Josiah Raddar for technical assistance. Research reported in this publication was supported by the Ellison Medical Foundation, Parker B. Francis Foundation, and the National Institutes of Health (R01AR055225 and K01AR064766). Mouse colonies were supported by the National Institutes of Health under Award Number AG025707 for the Jackson Aging Center. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. The Jackson Laboratory Shared Scientific Services were supported in part by a Basic Cancer Center Core Grant from the National Cancer Institute (CA34196).

Supplementary material

335_2016_9634_MOESM1_ESM.doc (234 kb)
Supplementary material 1 (DOC 234 kb)

References

  1. Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, Kondrashov AS, Sunyaev SR (2010) A method and server for predicting damaging missense mutations. Nat Methods 7:248–249CrossRefPubMedPubMedCentralGoogle Scholar
  2. Aherrahrou Z, Doehring LC, Ehlers EM, Liptau H, Depping R, Linsel-Nitschke P, Kaczmarek PM, Erdmann J, Schunkert H (2008) An alternative splice variant in Abcc6, the gene causing dystrophic calcification, leads to protein deficiency in C3H/He mice. J Biol Chem 283:7608–7615CrossRefPubMedGoogle Scholar
  3. Atiq M, Aziz K (1997) Familial progressive cardiac conduction disorder and multiple exostoses. J Pak Med Assoc 47:169–172PubMedGoogle Scholar
  4. Beckwith J, Cong Y, Sundberg JP, Elson CO, Leiter EH (2005) Cdcs1, a major colitogenic locus in mice, regulates innate and adaptive immune response to enteric bacterial antigens. Gastroenterology 129:1473–1484CrossRefPubMedGoogle Scholar
  5. Berndt A, Cario CL, Silva KA, Kennedy VE, Harrison DE, Paigen B, Sundberg JP (2011a) Identification of Fat4 and Tsc22d1 as novel candidate genes for spontaneous pulmonary adenomas. Cancer Res 71:5779–5791CrossRefPubMedPubMedCentralGoogle Scholar
  6. Berndt A, Leme AS, Williams LK, Von Smith R, Savage HS, Stearns TM, Tsaih SW, Shapiro SD, Peters LL, Paigen B, Svenson KL (2011b) Comparison of unrestrained plethysmography and forced oscillation for identifying genetic variability of airway responsiveness in inbred mice. Physiol Genomics 43:1–11CrossRefPubMedPubMedCentralGoogle Scholar
  7. Berndt A, Li Q, Potter C, Liang Y, Silva KA, Kennedy V, Yuan R, Uitto J, Sundberg JP (2012) A single nucleotide polymorphism in the Abcc6 gene associates with connective tissue mineralization in mice similar to targeted models for pseudoxanthoma elasticum. J Investig Dermatol 133:833–836CrossRefPubMedPubMedCentralGoogle Scholar
  8. Berndt A, Li Q, Potter CS, Liang Y, Silva KA, Kennedy V, Uitto J, Sundberg JP (2013) A single-nucleotide polymorphism in the Abcc6 gene associates with connective tissue mineralization in mice similar to targeted models for pseudoxanthoma elasticum. J Investig Dermatol 133:833–836CrossRefPubMedPubMedCentralGoogle Scholar
  9. Berndt A, Ackert-Bicknell C, Silva KA, Kennedy VE, Sundberg BA, Cates JM, Schofield PN, Sundberg JP (2016) Genetic determinants of fibro-osseous lesions in aged inbred mice. Exp Mol Pathol 100:92–100CrossRefPubMedGoogle Scholar
  10. Berthonneche C, Peter B, Schupfer F, Hayoz P, Kutalik Z, Abriel H, Pedrazzini T, Beckmann JS, Bergmann S, Maurer F (2009) Cardiovascular response to beta-adrenergic blockade or activation in 23 inbred mouse strains. PLoS One 4:e6610CrossRefPubMedPubMedCentralGoogle Scholar
  11. Birkenmeier E, Torrey A, Sundberg J (1995) Chromosomal location of modifier genes determining sensitivity of mice to dextran sulphate sodium. In: Tytgat G, Bartelsman J, Deventer SV (eds) Falk Symposium 85. Kluwer Academic Publishers, Den Haag, pp 401–407Google Scholar
  12. Bristol IJ, Farmer MA, Cong Y, Zheng XX, Strom TB, Elson CO, Sundberg JP, Leiter EH (2000) Heritable susceptibility for colitis in mice induced by IL-10 deficiency. Inflamm Bowel Dis 6:290–302PubMedGoogle Scholar
  13. Brown SJ, Tilli CM, Jackson B, Avilion AA, MacLeod MC, Maltais LJ, Lovering RC, Byrne C (2007) Rodent Lce gene clusters; new nomenclature, gene organization, and divergence of human and rodent genes. J Investig Dermatol 127:1782–1786CrossRefPubMedGoogle Scholar
  14. Brunnert SR, Shi S, Chang B (1999) Chromosomal localization of the loci responsible for dystrophic cardiac calcinosis in DBA/2 mice. Genomics 59:105–107CrossRefPubMedGoogle Scholar
  15. Chase TH, Cox GA, Burzenski L, Foreman O, Shultz LD (2009) Dysferlin deficiency and the development of cardiomyopathy in a mouse model of limb-girdle muscular dystrophy 2B. Am J Pathol 175:2299–2308CrossRefPubMedPubMedCentralGoogle Scholar
  16. Chen SN, Czernuszewicz G, Tan Y, Lombardi R, Jin J, Willerson JT, Marian AJ (2012) Human molecular genetic and functional studies identify TRIM63, encoding Muscle RING Finger Protein 1, as a novel gene for human hypertrophic cardiomyopathy. Circ Res 111:907–919CrossRefPubMedPubMedCentralGoogle Scholar
  17. DiTommaso T, Jones L, Cottle DL, Program WMG, Gerdin AK, Vancollie VE, Watt FM, Ramirez-Solis R, Bradley A, Steel KP, Sundberg JP, White JK, Smyth IM (2015) Identification of genes important for cutaneous function revealed by a large scale reverse genetic screen in the mouse. PLoS Genet 10:e1004705CrossRefGoogle Scholar
  18. Eaton GJ, Custer RP, Johnson FN, Stabenow KT (1978) Dystrophic cardiac calcinosis in mice: genetic, hormonal, and dietary influences. Am J Pathol 90:173–186PubMedPubMedCentralGoogle Scholar
  19. Farmer MA, Sundberg JP, Bristol IJ, Churchill GA, Li R, Elson CO, Leiter EH (2001) A major quantitative trait locus on chromosome 3 controls colitis severity in IL-10-deficient mice. Proc Natl Acad Sci USA 98:13820–13825CrossRefPubMedPubMedCentralGoogle Scholar
  20. Firth CH, Ward JM (1988) Color atlas of neoplastic and non-neoplastic lesions in aging mice. Elsevier, AmsterdamGoogle Scholar
  21. Flurky K, Currer J, Leiter EH, Witham B (2009) The Jackson Laboratory handbook on genetically standardized mice. T.J. Laboratory, Bar HarborGoogle Scholar
  22. Gorgels TG, Hu X, Scheffer GL, van der Wal AC, Toonstra J, de Jong PT, van Kuppevelt TH, Levelt CN, de Wolf A, Loves WJ, Scheper RJ, Peek R, Bergen AA (2005) Disruption of Abcc6 in the mouse: novel insight in the pathogenesis of pseudoxanthoma elasticum. Hum Mol Genet 14:1763–1773CrossRefPubMedGoogle Scholar
  23. Hamouda HI, Abulhasan S, Al-awadi S (2011) Hereditary multiple exostoses, macrocephaly, congenital heart disease, developmental delay, and mental retardation in a female patient: a possible new syndrome? Or new association? Egypt J Med Hum Genet 12:95–98CrossRefGoogle Scholar
  24. Hough TA, Bogani D, Cheeseman MT, Favor J, Nesbit MA, Thakker RV, Lyon MF (2004) Activating calcium-sensing receptor mutation in the mouse is associated with cataracts and ectopic calcification. Proc Natl Acad Sci U S A 101:13566–13571CrossRefPubMedPubMedCentralGoogle Scholar
  25. Hu MC, Shi M, Zhang J, Quinones H, Griffith C, Kuro-o M, Moe OW (2011) Klotho deficiency causes vascular calcification in chronic kidney disease. J Am Soc Nephrol 22:124–136CrossRefPubMedPubMedCentralGoogle Scholar
  26. Ignat M, Teletin M, Tisserand J, Khetchoumian K, Dennefeld C, Chambon P, Losson R, Mark M (2008) Arterial calcifications and increased expression of vitamin D receptor targets in mice lacking TIF1alpha. Proc Natl Acad Sci U S A 105:2598–2603CrossRefPubMedPubMedCentralGoogle Scholar
  27. Ivandic BT, Qiao JH, Machleder D, Liao F, Drake TA, Lusis AJ (1996) A locus on chromosome 7 determines myocardial cell necrosis and calcification (dystrophic cardiac calcinosis) in mice. Proc Natl Acad Sci USA 93:5483–5488CrossRefPubMedPubMedCentralGoogle Scholar
  28. Ivandic BT, Utz HF, Kaczmarek PM, Aherrahrou Z, Axtner SB, Klepsch C, Lusis AJ, Katus HA (2001) New Dyscalc loci for myocardial cell necrosis and calcification (dystrophic cardiac calcinosis) in mice. Physiol Genomics 6:137–144PubMedGoogle Scholar
  29. Jurisic G, Sundberg JP, Bleich A, Leiter EH, Broman KW, Buechler G, Alley L, Vestweber D, Detmar M (2010) Quantitative lymphatic vessel trait analysis suggests Vcam1 as candidate modifier gene of inflammatory bowel disease. Genes Immun 11:219–231CrossRefPubMedPubMedCentralGoogle Scholar
  30. Kang HM, Sul JH, Service SK, Zaitlen NA, Kong SY, Freimer NB, Sabatti C, Eskin E (2010) Variance component model to account for sample structure in genome-wide association studies. Nat Genet 42:348–354CrossRefPubMedPubMedCentralGoogle Scholar
  31. Kim Y, Bang H, Kim D (2000) TASK-3, a new member of the tandem pore K(+) channel family. J Biol Chem 275:9340–9347CrossRefPubMedGoogle Scholar
  32. Klement JF, Matsuzaki Y, Jiang QJ, Terlizzi J, Choi HY, Fujimoto N, Li K, Pulkkinen L, Birk DE, Sundberg JP, Uitto J (2005) Targeted ablation of the Abcc6 gene results in ectopic mineralization of connective tissues. Mol Cell Biol 25:8299–8310CrossRefPubMedPubMedCentralGoogle Scholar
  33. Koch M, Schulze J, Hansen U, Ashwodt T, Keene DR, Brunken WJ, Burgeson RE, Bruckner P, Bruckner-Tuderman L (2004) A novel marker of tissue junctions, collagen XXII. J Biol Chem 279:22514–22521CrossRefPubMedPubMedCentralGoogle Scholar
  34. Kornak U (2011) Animal models with pathological mineralization phenotypes. Joint Bone Spine 78:561–567CrossRefPubMedGoogle Scholar
  35. Le Corre Y, Le Saux O, Froeliger F, Libouban H, Kauffenstein G, Willoteaux S, Leftheriotis G, Martin L (2012) Quantification of the calcification phenotype of Abcc6-deficient mice with microcomputed tomography. Am J Pathol 180:2208–2213CrossRefPubMedGoogle Scholar
  36. Leme AS, Berndt A, Williams LK, Tsaih SW, Szatkiewicz JP, Verdugo R, Paigen B, Shapiro SD (2010) A survey of airway responsiveness in 36 inbred mouse strains facilitates gene mapping studies and identification of quantitative trait loci. Mol Genet Genomics 283:317–326CrossRefPubMedPubMedCentralGoogle Scholar
  37. Li Q, Uitto J (2013) Mineralization/anti-mineralization networks in the skin and vascular connective tissues. Am J Pathol 183:10–18CrossRefPubMedPubMedCentralGoogle Scholar
  38. Li Q, Berndt A, Guo H, Sundberg J, Uitto J (2012) A novel animal model for pseudoxanthoma elasticum—the KK/HlJ mouse. Am J Pathol 181:1190–1196CrossRefPubMedPubMedCentralGoogle Scholar
  39. Li Q, Guo H, Chou DW, Berndt A, Sundberg JP, Uitto J (2013) Mutant Enpp1 asj mouse as a model for generalized arterial calcification of infancy. Dis Model Mech 6:1227–1235CrossRefPubMedPubMedCentralGoogle Scholar
  40. Li Q, Chou DW, Price TP, Sundberg JP, Uitto J (2014a) Genetic modulation of nephrocalcinosis in mouse models of ectopic mineralization: the Abcc6(tm1Jfk) and Enpp1(asj) mutant mice. Lab Invest 94:623–632CrossRefPubMedPubMedCentralGoogle Scholar
  41. Li Q, Pratt CH, Dionne LA, Fairfield H, Karst SY, Sundberg JP, Uitto J (2014b) Spontaneous asj-2J mutant mouse as a model for generalized arterial calcification of infancy: a large deletion/insertion mutation in the Enpp1 gene. PLoS One 9:e113542CrossRefPubMedPubMedCentralGoogle Scholar
  42. Li Q, Aranyi T, Varadi A, Terry SF, Uitto J (2016) Research progress in pseudoxanthoma elasticum and related ectopic mineralization disorders. J Investig Dermatol 136:550–556CrossRefPubMedGoogle Scholar
  43. Mahler M, Bristol IJ, Leiter EH, Workman AE, Birkenmeier EH, Elson CO, Sundberg JP (1998) Differential susceptibility of inbred mouse strains to dextran sulfate sodium-induced colitis. Am J Physiol 274:G544–551PubMedGoogle Scholar
  44. Mahler M, Bristol IJ, Sundberg JP, Churchill GA, Birkenmeier EH, Elson CO, Leiter EH (1999) Genetic analysis of susceptibility to dextran sulfate sodium-induced colitis in mice. Genomics 55:147–156CrossRefPubMedGoogle Scholar
  45. Meng H, Vera I, Che N, Wang X, Wang SS, Ingram-Drake L, Schadt EE, Drake TA, Lusis AJ (2007) Identification of Abcc6 as the major causal gene for dystrophic cardiac calcification in mice through integrative genomics. Proc Nat Acad Sci USA 104:4530–4535CrossRefPubMedPubMedCentralGoogle Scholar
  46. Mohr U, Dungworth DL, Capen CC, Carlton WW, Sundberg JP, Ward JM (1996) Pathobiology of the aging mouse. Intl Life Sciences Institute, Washington, DCGoogle Scholar
  47. Mungrue IN, Zhao P, Yao Y, Meng H, Rau C, Havel JV, Gorgels TG, Bergen AA, MacLellan WR, Drake TA, Bostrom KI, Lusis AJ (2011) Abcc6 deficiency causes increased infarct size and apoptosis in a mouse cardiac ischemia-reperfusion model. Arterioscler Thromb Vasc Biol 31:2806–2812CrossRefPubMedPubMedCentralGoogle Scholar
  48. Neu N, Rose NR, Beisel KW, Herskowitz A, Gurri-Glass G, Craig SW (1987) Cardiac myosin induces myocarditis in genetically predisposed mice. J Immunol 139:3630–3636PubMedGoogle Scholar
  49. Peche VS, Holak TA, Burgute BD, Kosmas K, Kale SP, Wunderlich FT, Elhamine F, Stehle R, Pfitzer G, Nohroudi K, Addicks K, Stockigt F, Schrickel JW, Gallinger J, Schleicher M, Noegel AA (2013) Ablation of cyclase-associated protein 2 (CAP2) leads to cardiomyopathy. Cell Mol Life Sci 70:527–543CrossRefPubMedGoogle Scholar
  50. Rau CD, Wang J, Avetisyan R, Romay MC, Martin L, Ren S, Wang Y, Lusis AJ (2015) Mapping genetic contributions to cardiac pathology induced by Beta-adrenergic stimulation in mice. Circ Cardiovasc Genet 8:40–49CrossRefPubMedPubMedCentralGoogle Scholar
  51. Schofield PN, Gruenberger M, Sundberg JP (2010) Pathbase and the MPATH ontology. Community resources for mouse histopathology. Vet Pathol 47:1016–1020CrossRefPubMedPubMedCentralGoogle Scholar
  52. Schofield PN, Vogel P, Gkoutos GV, Sundberg JP (2012) Exploring the elephant: histopathology in high-throughput phenotyping of mutant mice. Dis Model Mech 5:19–25CrossRefPubMedPubMedCentralGoogle Scholar
  53. Silva KA, Sundberg JP (2012) Necropsy methods. In: Hedrich HJ (ed) The Laboratory Mouse. Academic Press, London, pp 779–806Google Scholar
  54. Sundberg JP, Sundberg BA, Schofield P (2008) Integrating mouse anatomy and pathology ontologies into a phenotyping database: tools for data capture and training. Mamm Genome 19:413–419CrossRefPubMedPubMedCentralGoogle Scholar
  55. Sundberg JP, Berndt A, Sundberg BA, Silva KA, Kennedy V, Bronson R, Yuan R, Paigen B, Harrison D, Schofield PN (2011) The mouse as a model for understanding chronic diseases of aging: The histopathologic basis of aging in inbred mice. Pathobiol Aging Age Relat Dis 1:7179. doi: 10.3402/pba.V1i0.7179 Google Scholar
  56. Sundberg JP, Chevallier L, Silva KA, Kennedy VE, Sundberg BA, Li Q, Uitto J, King LE Jr, Berndt A (2014) Mouse alopecia areata and heart disease: know your mouse! J Investig Dermatol 134:279–281CrossRefPubMedPubMedCentralGoogle Scholar
  57. Uitto J, Li Q, Jiang Q (2010) Pseudoxanthoma elasticum: molecular genetics and putative pathomechanisms. J Investig Dermatol 130:661–670CrossRefPubMedPubMedCentralGoogle Scholar
  58. Van Vleet JF, Ferrans VJ (1987) Ultrastructural changes in inherited cardiac calcinosis of DBA/2 mice. Am J Vet Res 48:255–261PubMedGoogle Scholar
  59. Vogel P, Hansen GM, Read RW, Vance RB, Thiel M, Liu J, Wronski TJ, Smith DD, Jeter-Jones S, Brommage R (2012) Amelogenesis imperfecta and other biomineralization defects in Fam20a and Fam20c null mice. Vet Pathol 49:998–1017CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Qiaoli Li
    • 1
  • Annerose Berndt
    • 2
    • 3
  • Beth A. Sundberg
    • 4
  • Kathleen A. Silva
    • 4
  • Victoria E. Kennedy
    • 4
  • Clinton L. Cario
    • 2
  • Matthew A. Richardson
    • 2
  • Thomas H. Chase
    • 4
  • Paul N. Schofield
    • 4
    • 5
  • Jouni Uitto
    • 1
  • John P. Sundberg
    • 4
  1. 1.Department of Dermatology and Cutaneous BiologySidney Kimmel Medical College at Thomas Jefferson UniversityPhiladelphiaUSA
  2. 2.Department of MedicineUniversity of PittsburghPittsburghUSA
  3. 3.University of Pittsburgh Medical CenterPittsburghUSA
  4. 4.The Jackson LaboratoryBar HarborUSA
  5. 5.Department of Physiology, Development and Neuroscience, University of CambridgeCambridgeUK

Personalised recommendations