Advertisement

Mammalian Genome

, Volume 27, Issue 3–4, pp 111–121 | Cite as

Exome sequencing identifies a nonsense mutation in Fam46a associated with bone abnormalities in a new mouse model for skeletal dysplasia

  • Susanne Diener
  • Sieglinde Bayer
  • Sibylle Sabrautzki
  • Thomas Wieland
  • Birgit Mentrup
  • Gerhard K. H. Przemeck
  • Birgit Rathkolb
  • Elisabeth Graf
  • Wolfgang Hans
  • Helmut Fuchs
  • Marion Horsch
  • Thomas Schwarzmayr
  • Eckhard Wolf
  • Eva Klopocki
  • Franz Jakob
  • Tim M. Strom
  • Martin Hrabě de Angelis
  • Bettina Lorenz-DepiereuxEmail author
Article

Abstract

We performed exome sequencing for mutation discovery of an ENU (N-ethyl-N-nitrosourea)-derived mouse model characterized by significant elevated plasma alkaline phosphatase (ALP) activities in female and male mutant mice, originally named BAP014 (bone screen alkaline phosphatase #14). We identified a novel loss-of-function mutation within the Fam46a (family with sequence similarity 46, member A) gene (NM_001160378.1:c.469G>T, NP_001153850.1:p.Glu157*). Heterozygous mice of this mouse line (renamed Fam46a E157*Mhda) had significantly high ALP activities and apparently no other differences in morphology compared to wild-type mice. In contrast, homozygous Fam46a E157*Mhda mice showed severe morphological and skeletal abnormalities including short stature along with limb, rib, pelvis, and skull deformities with minimal trabecular bone and reduced cortical bone thickness in long bones. ALP activities of homozygous mutants were almost two-fold higher than in heterozygous mice. Fam46a is weakly expressed in most adult and embryonic tissues with a strong expression in mineralized tissues as calvaria and femur. The FAM46A protein is computationally predicted as a new member of the superfamily of nucleotidyltransferase fold proteins, but little is known about its function. Fam46a E157*Mhda mice are the first mouse model for a mutation within the Fam46a gene.

Keywords

Exome Sequencing Mouse Line Skeletal Dysplasia Cortical Bone Thickness Intramembranous Ossification 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We thank Sandy Lösecke, Sandra Hoffmann, Andreas Mayer, Carola Fischer, Bianca Schmick, Sören Kundt, Anja Wohlbier, Elfi Holupirek, Sebastian Kaidel, Silvia Crowley, and Gerlinde Bergter for excellent technical assistance. We also thank Robert Brommage for scientific discussions and revision of the manuscript. This work was supported by the German Ministry of Education and Research BMBF OSTEOPATH Grant (01EC1006B), Nationales Genomforschungsnetz (NGFN 01GR0430), and NGFNplus Grants (01GS0850 and 01GS0851).

Compliance with ethical standards

Conflicts of interest

The authors declare that they have no conflicts of interest.

Supplementary material

335_2016_9619_MOESM1_ESM.rtf (69 kb)
Supplementary material 1 (RTF 69 kb)

References

  1. Aigner B, Rathkolb B, Klempt M, Wagner S, Michel D et al (2011) Generation of N-ethyl-N-nitrosourea-induced mouse mutants with deviations in hematological parameters. Mamm Genome 22:495–505CrossRefPubMedGoogle Scholar
  2. Aravind L, Koonin EV (1999) DNA polymerase beta-like nucleotidyltransferase superfamily: identification of three new families, classification and evolutionary history. Nucleic Acids Res 27:1609–1618CrossRefPubMedPubMedCentralGoogle Scholar
  3. Baker JC, Harland RM (1997) From receptor to nucleus: the Smad pathway. Curr Opin Genet Dev 7:467–473CrossRefPubMedGoogle Scholar
  4. Barragan I, Borrego S, Abd El-Aziz MM, El-Ashry MF, Abu-Safieh L et al (2008) Genetic analysis of FAM46A in Spanish families with autosomal recessive retinitis pigmentosa: characterisation of novel VNTRs. Ann Hum Genet 72:26–34CrossRefPubMedGoogle Scholar
  5. Benjachat T, Tongyoo P, Tantivitayakul P, Somparn P, Hirankarn N et al (2015) Biomarkers for refractory lupus nephritis: a microarray study of kidney tissue. Int J Mol Sci 16:14276–14290CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bettoni F, Filho FC, Grosso DM, Galante PA, Parmigiani RB et al (2009) Identification of FAM46D as a novel cancer/testis antigen using EST data and serological analysis. Genomics 94:153–160CrossRefPubMedGoogle Scholar
  7. Chen G, Deng C, Li YP (2012) TGF-beta and BMP signaling in osteoblast differentiation and bone formation. Int J Biol Sci 8:272–288CrossRefPubMedPubMedCentralGoogle Scholar
  8. Colland F, Jacq X, Trouplin V, Mougin C, Groizeleau C et al (2004) Functional proteomics mapping of a human signaling pathway. Genome Res 14:1324–1332CrossRefPubMedPubMedCentralGoogle Scholar
  9. Diez-Roux G, Banfi S, Sultan M, Geffers L, Anand S et al (2011) A high-resolution anatomical atlas of the transcriptome in the mouse embryo. PLoS Biol 9:e1000582CrossRefPubMedPubMedCentralGoogle Scholar
  10. Etokebe GE, Kuchler AM, Haraldsen G, Landin M, Osmundsen H et al (2009) Family-with-sequence-similarity-46, member A (Fam46a) gene is expressed in developing tooth buds. Arch Oral Biol 54:1002–1007CrossRefPubMedGoogle Scholar
  11. Etokebe GE, Bulat-Kardum L, Munthe LA, Balen S, Dembic Z (2014) Association of variable number of tandem repeats in the coding region of the FAM46A gene, FAM46A rs11040 SNP and BAG6 rs3117582 SNP with susceptibility to tuberculosis. PLoS One 9:e91385CrossRefPubMedPubMedCentralGoogle Scholar
  12. Etokebe GE, Jotanovic Z, Mihelic R, Mulac-Jericevic B, Nikolic T et al (2015) Susceptibility to large-joint osteoarthritis (hip and knee) is associated with BAG6 rs3117582 SNP and the VNTR polymorphism in the second exon of the FAM46A gene on chromosome 6. J Orthop Res 33:56–62CrossRefPubMedGoogle Scholar
  13. Fuchs H, Gailus-Durner V, Adler T, Aguilar-Pimentel JA, Becker L et al (2011) Mouse phenotyping. Methods 53:120–135CrossRefPubMedGoogle Scholar
  14. Inouye M (1976) Differential staining of cartilage and bone in fetal mouse skeleton by Alcian Blue and Alizarin Red S. Congen Anom 16:171–173Google Scholar
  15. Janssens K, ten Dijke P, Janssens S, Van Hul W (2005) Transforming growth factor-beta1 to the bone. Endocr Rev 26:743–774CrossRefPubMedGoogle Scholar
  16. Kinoshita A, Saito T, Tomita H, Makita Y, Yoshida K et al (2000) Domain-specific mutations in TGFB1 result in Camurati-Engelmann disease. Nat Genet 26:19–20CrossRefPubMedGoogle Scholar
  17. Klempt M, Rathkolb B, Fuchs E, de Angelis MH, Wolf E et al (2006) Genotype-specific environmental impact on the variance of blood values in inbred and F1 hybrid mice. Mamm Genome 17:93–102CrossRefPubMedGoogle Scholar
  18. Krakow D, Rimoin DL (2010) The skeletal dysplasias. Genet Med 12:327–341CrossRefPubMedGoogle Scholar
  19. Kuchta K, Knizewski L, Wyrwicz LS, Rychlewski L, Ginalski K (2009) Comprehensive classification of nucleotidyltransferase fold proteins: identification of novel families and their representatives in human. Nucleic Acids Res 37:7701–7714CrossRefPubMedPubMedCentralGoogle Scholar
  20. Lagali PS, Kakuk LE, Griesinger IB, Wong PW, Ayyagari R (2002) Identification and characterization of C6orf37, a novel candidate human retinal disease gene on chromosome 6q14. Biochem Biophys Res Commun 293:356–365CrossRefPubMedGoogle Scholar
  21. Naveed M, Nath SK, Gaines M, Al-Ali MT, Al-Khaja N et al (2007) Genomewide linkage scan for split-hand/foot malformation with long-bone deficiency in a large Arab family identifies two novel susceptibility loci on chromosomes 1q42.2-q43 and 6q14.1. Am J Hum Genet 80:105–111CrossRefPubMedPubMedCentralGoogle Scholar
  22. Robinson JT, Thorvaldsdottir H, Winckler W, Guttman M, Lander ES et al (2011) Integrative genomics viewer. Nat Biotechnol 29:24–26CrossRefPubMedPubMedCentralGoogle Scholar
  23. Rosati R, Horan GS, Pinero GJ, Garofalo S, Keene DR et al (1994) Normal long bone growth and development in type X collagen-null mice. Nat Genet 8:129–135CrossRefPubMedGoogle Scholar
  24. Sabrautzki S, Rubio-Aliaga I, Hans W, Fuchs H, Rathkolb B et al (2012) New mouse models for metabolic bone diseases generated by genome-wide ENU mutagenesis. Mamm Genome 23:416–430CrossRefPubMedPubMedCentralGoogle Scholar
  25. Schoggins JW, Wilson SJ, Panis M, Murphy MY, Jones CT et al (2011) A diverse range of gene products are effectors of the type I interferon antiviral response. Nature 472:481–485CrossRefPubMedPubMedCentralGoogle Scholar
  26. Seibel MJ (2005) Biochemical markers of bone turnover: part I: biochemistry and variability. Clin Biochem Rev 26:97–122PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Susanne Diener
    • 1
  • Sieglinde Bayer
    • 2
    • 9
  • Sibylle Sabrautzki
    • 2
    • 3
    • 10
  • Thomas Wieland
    • 1
  • Birgit Mentrup
    • 4
  • Gerhard K. H. Przemeck
    • 2
    • 3
  • Birgit Rathkolb
    • 2
    • 5
  • Elisabeth Graf
    • 1
  • Wolfgang Hans
    • 2
    • 3
  • Helmut Fuchs
    • 2
    • 3
  • Marion Horsch
    • 2
  • Thomas Schwarzmayr
    • 1
  • Eckhard Wolf
    • 5
  • Eva Klopocki
    • 6
  • Franz Jakob
    • 4
  • Tim M. Strom
    • 1
    • 7
  • Martin Hrabě de Angelis
    • 2
    • 3
    • 8
  • Bettina Lorenz-Depiereux
    • 1
    Email author
  1. 1.Institute of Human Genetics, German Research Center for Environmental Health (GmbH)Helmholtz Zentrum MünchenNeuherbergGermany
  2. 2.Institute of Experimental Genetics and German Mouse Clinic, German Research Center for Environmental HealthHelmholtz Zentrum MünchenNeuherbergGermany
  3. 3.Member of German Center for Diabetes Research (DZD)NeuherbergGermany
  4. 4.Experimental Labs Stem Cell Group, Orthopedic Department, Orthopedic Center for Musculoskeletal ResearchUniversity of WürzburgWürzburgGermany
  5. 5.Chair for Molecular Animal Breeding and Biotechnology, Gene CenterLudwig-Maximilians-Universität MünchenMunichGermany
  6. 6.Institute of Human GeneticsUniversität WürzburgWürzburgGermany
  7. 7.Institute of Human GeneticsTechnische Universität MünchenMunichGermany
  8. 8.Chair in Experimental GeneticsTechnische Universität MünchenFreising-WeihenstephanGermany
  9. 9.Technische Universität MünchenMunichGermany
  10. 10.Research Unit Comparative Medicine, German Research Center for Environmental HealthHelmholtz Zentrum MünchenNeuherbergGermany

Personalised recommendations