Mammalian Genome

, Volume 26, Issue 3–4, pp 181–190

Genome-wide association analysis reveals genetic loci and candidate genes for meat quality traits in Chinese Laiwu pigs

  • Xinwei Xiong
  • Xianxian Liu
  • Lisheng Zhou
  • Jie Yang
  • Bin Yang
  • Huanban Ma
  • Xianhua Xie
  • Yixuan Huang
  • Shaoming Fang
  • Shijun Xiao
  • Jun Ren
  • Congying Chen
  • Junwu Ma
  • Lusheng Huang
Article

Abstract

Meat quality traits have economically significant impacts on the pig industry, and can be improved using molecular approaches in pig breeding. Since 1994 when the first genome-wide scan for quantitative trait loci (QTLs) in pig was reported, over the past two decades, numerous QTLs have been identified for meat quality traits by family based linkage analyses. However, little is known about the genetic variants for meat quality traits in Chinese purebred or outbred populations. To unveil it, we performed a genome-wide association study for 10 meat quality traits in Chinese purebred Laiwu pigs. In total, 75 significant SNPs (P < 1.01 × 10−6) and 33 suggestive SNPs (P < 2.03 × 10−5) were identified. On SSC12, a region between 56.22 and 61.49 Mb harbored a cluster of SNPs that were associated with meat color parameters (L*, lightness; a*, redness; b*, yellowness) and moisture content of longissimus muscle (LM) and semimembranosus muscle at the genome-wide significance level. A region on SSC4 also has pleiotropic effects on moisture content and drip loss of LM. In addition, this study revealed at least five novel QTLs and several candidate genes including 4-linked MYH genes (MYH1, MYH2, MYH3, and MYH13), MAL2, LPAR1, and PRKAG3 at four significant loci. Except for the SSC12 QTL, other QTLs are likely tissue-specific. These results provide new insights into the genetic basis of meat quality traits in Chinese Laiwu pigs and some significant SNPs reported here could be incorporated into the selection programs involving this breed.

Supplementary material

335_2015_9558_MOESM1_ESM.tif (275 kb)
Supplementary material 1 (TIFF 275 kb)
335_2015_9558_MOESM2_ESM.tif (473 kb)
Supplementary material 2 (TIFF 472 kb)
335_2015_9558_MOESM3_ESM.docx (13 kb)
Supplementary material 3 (DOCX 12 kb)

References

  1. Andersson L, Haley CS, Ellegren H, Knott SA, Johansson M, Andersson K, Andersson-Eklund L, Edfors-Lilja I, Fredholm M, Hansson I et al (1994) Genetic mapping of quantitative trait loci for growth and fatness in pigs. Science 263:1771–1774CrossRefPubMedGoogle Scholar
  2. Aulchenko YS, Ripke S, Isaacs A, van Duijn CM (2007) GenABEL: an R library for genome-wide association analysis. Bioinformatics 23:1294–1296CrossRefPubMedGoogle Scholar
  3. Aziziyeh AI, Li TT, Pape C, Pampillo M, Chidiac P, Possmayer F, Babwah AV, Bhattacharya M (2009) Dual regulation of lysophosphatidic acid (LPA1) receptor signalling by Ral and GRK. Cell Signal 21:1207–1217CrossRefPubMedGoogle Scholar
  4. Barrett JC, Fry B, Maller J, Daly MJ (2005) Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21:263–265CrossRefPubMedGoogle Scholar
  5. Becker D, Wimmers K, Luther H, Hofer A, Leeb T (2013) A genome-wide association study to detect QTL for commercially important traits in Swiss large white boars. PLoS One 8:e55951CrossRefPubMedCentralPubMedGoogle Scholar
  6. Berg EP (2006) Pork composition and quality assessment procedures, 1st edn. National Pork Producer Council (NPPC) Des Moines, IA, USAGoogle Scholar
  7. Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES (2007) TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23:2633–2635CrossRefPubMedGoogle Scholar
  8. Breslow NE, Clayton DG (1993) Approximate inference in generalized linear mixed models. J Am Stat Assoc 88(421):9–25Google Scholar
  9. Ciobanu D, Bastiaansen J, Malek M, Helm J, Woollard J, Plastow G, Rothschild M (2001) Evidence for new alleles in the protein kinase adenosine monophosphate-activated gamma(3)-subunit gene associated with low glycogen content in pig skeletal muscle and improved meat quality. Genetics 159:1151–1162PubMedCentralPubMedGoogle Scholar
  10. de Marco MC, Martin-Belmonte F, Kremer L, Albar JP, Correas I, Vaerman JP, Marazuela M, Byrne JA, Alonso MA (2002) MAL2, a novel raft protein of the MAL family, is an essential component of the machinery for transcytosis in hepatoma HepG2 cells. J Cell Biol 159:37–44CrossRefPubMedCentralPubMedGoogle Scholar
  11. Druet T, Farnir FP (2011) Modeling of identity-by-descent processes along a chromosome between haplotypes and their genotyped ancestors. Genetics 188:409–419CrossRefPubMedCentralPubMedGoogle Scholar
  12. Druet T, Georges M (2010) A hidden markov model combining linkage and linkage disequilibrium information for haplotype reconstruction and quantitative trait locus fine mapping. Genetics 184:789–798CrossRefPubMedCentralPubMedGoogle Scholar
  13. Duan YY, Ma JW, Yuan F, Huang LB, Yang KX, Xie JP, Wu GZ, Huang LS (2009) Genome-wide identification of quantitative trait loci for pork temperature, pH decline, and glycolytic potential in a large-scale White Duroc x Chinese Erhualian resource population. J Anim Sci 87:9–16CrossRefPubMedGoogle Scholar
  14. Fan B, Onteru SK, Du ZQ, Garrick DJ, Stalder KJ, Rothschild MF (2011) Genome-wide association study identifies Loci for body composition and structural soundness traits in pigs. PLoS One 6:e14726CrossRefPubMedCentralPubMedGoogle Scholar
  15. Fujii J, Otsu K, Zorzato F, de Leon S, Khanna VK, Weiler JE, O’Brien PJ, MacLennan DH (1991) Identification of a mutation in porcine ryanodine receptor associated with malignant hyperthermia. Science 253:448–451CrossRefPubMedGoogle Scholar
  16. Gallardo D, Pena RN, Quintanilla R, Ramirez O, Almuzara D, Noguera JL, Amills M (2012) Quantitative trait loci analysis of a Duroc commercial population highlights differences in the genetic determination of meat quality traits at two different muscles. Anim Genet 43:800–804CrossRefPubMedGoogle Scholar
  17. Herault F, Vincent A, Dameron O, Le Roy P, Cherel P, Damon M (2014) The longissimus and semimembranosus muscles display marked differences in their gene expression profiles in pig. PLoS One 9:e96491CrossRefPubMedCentralPubMedGoogle Scholar
  18. Kim KS, Larsen N, Short T, Plastow G, Rothschild MF (2000) A missense variant of the porcine melanocortin-4 receptor (MC4R) gene is associated with fatness, growth, and feed intake traits. Mamm Genome 11:131–135CrossRefPubMedGoogle Scholar
  19. Lee KT, Lee YM, Alam M, Choi BH, Park MR, Kim KS, Kim TH, Kim JJ (2012) A whole genome association study on meat quality traits using high density SNP Chips in a cross between Korean native pig and landrace. Asian Aust J Anim Sci 25:1529–1539CrossRefGoogle Scholar
  20. Leinwand LA, Fournier RE, Nadal-Ginard B, Shows TB (1983) Multigene family for sarcomeric myosin heavy chain in mouse and human DNA: localization on a single chromosome. Science 221:766–769CrossRefPubMedGoogle Scholar
  21. Luo W, Cheng D, Chen S, Wang L, Li Y, Ma X, Song X, Liu X, Li W, Liang J, Yan H, Zhao K, Wang C, Wang L, Zhang L (2012) Genome-wide association analysis of meat quality traits in a porcine large white x Minzhu intercross population. Int J Biol Sci 8:580–595CrossRefPubMedCentralPubMedGoogle Scholar
  22. Ma J, Ren J, Guo Y, Duan Y, Ding N, Zhou L, Li L, Yan X, Yang K, Huang L, Song Y, Xie J, Milan D, Huang L (2009) Genome-wide identification of quantitative trait loci for carcass composition and meat quality in a large-scale white duroc x Chinese Erhualian resource population. Anim Genet 40:637–647CrossRefPubMedGoogle Scholar
  23. Ma J, Yang J, Zhou L, Zhang Z, Ma H, Xie X, Zhang F, Xiong X, Cui L, Yang H, Liu X, Duan Y, Xiao S, Ai H, Ren J, Huang L (2013) Genome-wide association study of meat quality traits in a white duroc x Erhualian F2 intercross and Chinese Sutai pigs. PLoS One 8:e64047CrossRefPubMedCentralPubMedGoogle Scholar
  24. Ma J, Yang J, Zhou L, Ren J, Liu X, Zhang H, Yang B, Zhang Z, Ma H, Xie X, Xing Y, Guo Y, Huang L (2014) A splice mutation in the PHKG1 gene causes high glycogen content and low meat quality in pig skeletal muscle. PLoS Genet 10:e1004710CrossRefPubMedCentralPubMedGoogle Scholar
  25. Milan D, Jeon JT, Looft C, Amarger V, Robic A, Thelander M, Rogel-Gaillard C, Paul S, Iannuccelli N, Rask L, Ronne H, Lundstrom K, Reinsch N, Gellin J, Kalm E, Roy PL, Chardon P, Andersson L (2000) A mutation in PRKAG3 associated with excess glycogen content in pig skeletal muscle. Science 288:1248–1251CrossRefPubMedGoogle Scholar
  26. Moolenaar WH, Kranenburg O, Postma FR, Zondag GC (1997) Lysophosphatidic acid: G-protein signalling and cellular responses. Curr Opin Cell Biol 9:168–173CrossRefPubMedGoogle Scholar
  27. Nonneman DJ, Shackelford SD, King DA, Wheeler TL, Wiedmann RT, Snelling WM, Rohrer GA (2013) Genome-wide association of meat quality traits and tenderness in swine. J Anim Sci 91:4043–4050CrossRefPubMedGoogle Scholar
  28. Oldfors A, Tajsharghi H, Darin N, Lindberg C (2004) Myopathies associated with myosin heavy chain mutations. Acta Myol 23:90–96PubMedGoogle Scholar
  29. Otto G, Roehe R, Looft H, Thoelking L, Knap PW, Rothschild MF, Plastow GS, Kalm E (2007) Associations of DNA markers with meat quality traits in pigs with emphasis on drip loss. Meat Sci 75:185–195CrossRefPubMedGoogle Scholar
  30. Pearson TA, Manolio TA (2008) How to interpret a genome-wide association study. JAMA 299:1335–1344CrossRefPubMedGoogle Scholar
  31. Ponsuksili S, Murani E, Trakooljul N, Schwerin M, Wimmers K (2014) Discovery of candidate genes for muscle traits based on GWAS supported by eQTL-analysis. Int J Biol Sci 10:327–337CrossRefPubMedCentralPubMedGoogle Scholar
  32. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, Maller J, Sklar P, de Bakker PI, Daly MJ, Sham PC (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81:559–575CrossRefPubMedCentralPubMedGoogle Scholar
  33. Ramos AM, Crooijmans RP, Affara NA, Amaral AJ, Archibald AL, Beever JE, Bendixen C, Churcher C, Clark R, Dehais P, Hansen MS, Hedegaard J, Hu ZL, Kerstens HH, Law AS, Megens HJ, Milan D, Nonneman DJ, Rohrer GA, Rothschild MF, Smith TP, Schnabel RD, Van Tassell CP, Taylor JF, Wiedmann RT, Schook LB, Groenen MA (2009) Design of a high density SNP genotyping assay in the pig using SNPs identified and characterized by next generation sequencing technology. PLoS One 4:e6524CrossRefPubMedCentralPubMedGoogle Scholar
  34. Rassmussen AJ, Andersson M (1996) New method for determination of drip loss in pork muscles. In: Proceedings 42nd international congress of meat science and technology. Lillehmmer, Norway, pp 286–287Google Scholar
  35. Ren J, Duan Y, Qiao R, Yao F, Zhang Z, Yang B, Guo Y, Xiao S, Wei R, Ouyang Z, Ding N, Ai H, Huang L (2011) A missense mutation in PPARD causes a major QTL effect on ear size in pigs. PLoS Genet 7:e1002043CrossRefPubMedCentralPubMedGoogle Scholar
  36. Riquet J, Gilbert H, Servin B, Sanchez MP, Iannuccelli N, Billon Y, Bidanel JP, Milan D (2011) A locally congenic backcross design in pig: a new regional fine QTL mapping approach miming congenic strains used in mouse. BMC Genet 12:6CrossRefPubMedCentralPubMedGoogle Scholar
  37. Rosenvold K, Andersen HJ (2003) Factors of significance for pork quality-a review. Meat Sci 64:219–237CrossRefPubMedGoogle Scholar
  38. Rothschild M, Bidanel JP (2002) Current status of quantitative trait locus mapping in pigs. Pig News Inf 23:39N–54NGoogle Scholar
  39. Ryan MT, Hamill RM, O’Halloran AM, Davey GC, McBryan J, Mullen AM, McGee C, Gispert M, Southwood OI, Sweeney T (2012) SNP variation in the promoter of the PRKAG3 gene and association with meat quality traits in pig. BMC Genet 13:66CrossRefPubMedCentralPubMedGoogle Scholar
  40. Sanchez MP, Riquet J, Iannuccelli N, Gogue J, Billon Y, Demeure O, Caritez JC, Burgaud G, Feve K, Bonnet M, Pery C, Lagant H, Le Roy P, Bidanel JP, Milan D (2006) Effects of quantitative trait loci on chromosomes 1, 2, 4, and 7 on growth, carcass, and meat quality traits in backcross Meishan x large white pigs. J Anim Sci 84:526–537PubMedGoogle Scholar
  41. Sanchez MP, Tribout T, Iannuccelli N, Bouffaud M, Servin B, Tenghe A, Dehais P, Muller N, Del Schneider MP, Mercat MJ, Rogel-Gaillard C, Milan D, Bidanel JP, Gilbert H (2014) A genome-wide association study of production traits in a commercial population of large white pigs: evidence of haplotypes affecting meat quality. Genet Sel Evol 46:12CrossRefPubMedCentralPubMedGoogle Scholar
  42. Sartelet A, Druet T, Michaux C, Fasquelle C, Geron S, Tamma N, Zhang Z, Coppieters W, Georges M, Charlier C (2012) A splice site variant in the bovine RNF11 gene compromises growth and regulation of the inflammatory response. PLoS Genet 8:e1002581CrossRefPubMedCentralPubMedGoogle Scholar
  43. Skarnes WC, Rosen B, West AP, Koutsourakis M, Bushell W, Iyer V, Mujica AO, Thomas M, Harrow J, Cox T, Jackson D, Severin J, Biggs P, Fu J, Nefedov M, de Jong PJ, Stewart AF, Bradley A (2011) A conditional knockout resource for the genome-wide study of mouse gene function. Nature 474:337–342CrossRefPubMedCentralPubMedGoogle Scholar
  44. Stratz P, Wellmann R, Preuss S, Wimmers K, Bennewitz J (2014) Genome-wide association analysis for growth, muscularity and meat quality in Pietrain pigs. Anim Genet 45:350–356CrossRefPubMedGoogle Scholar
  45. Suzuki K, Irie M, Kadowaki H, Shibata T, Kumagai M, Nishida A (2005) Genetic parameter estimates of meat quality traits in Duroc pigs selected for average daily gain, longissimus muscle area, backfat thickness, and intramuscular fat content. J Anim Sci 83:2058–2065PubMedGoogle Scholar
  46. Toydemir RM, Rutherford A, Whitby FG, Jorde LB, Carey JC, Bamshad MJ (2006) Mutations in embryonic myosin heavy chain (MYH3) cause freeman–sheldon syndrome and Sheldon–Hall syndrome. Nat Genet 38:561–565CrossRefPubMedGoogle Scholar
  47. Uimari P, Sironen A (2014) A combination of two variants in PRKAG3 is needed for a positive effect on meat quality in pigs. BMC Genet 15:29CrossRefPubMedCentralPubMedGoogle Scholar
  48. Van Laere AS, Nguyen M, Braunschweig M, Nezer C, Collette C, Moreau L, Archibald AL, Haley CS, Buys N, Tally M, Andersson G, Georges M, Andersson L (2003) A regulatory mutation in IGF2 causes a major QTL effect on muscle growth in the pig. Nature 425:832–836CrossRefPubMedGoogle Scholar
  49. Wellcome Trust Case Control C (2007) Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447:661–678CrossRefGoogle Scholar
  50. Yang Q, Cui J, Chazaro I, Cupples LA, Demissie S (2005) Power and type I error rate of false discovery rate approaches in genome-wide association studies. BMC Genet 6(Suppl 1):S134CrossRefPubMedCentralPubMedGoogle Scholar
  51. Yu J, Pressoir G, Briggs WH, Vroh Bi I, Yamasaki M, Doebley JF, McMullen MD, Gaut BS, Nielsen DM, Holland JB, Kresovich S, Buckler ES (2006) A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet 38:203–208CrossRefPubMedGoogle Scholar
  52. Zhang F, Zhang Z, Yan X, Chen H, Zhang W, Hong Y, Huang L (2014) Genome-wide association studies for hematological traits in Chinese Sutai pigs. BMC Genet 15:41CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Xinwei Xiong
    • 1
  • Xianxian Liu
    • 1
  • Lisheng Zhou
    • 1
  • Jie Yang
    • 1
  • Bin Yang
    • 1
  • Huanban Ma
    • 1
  • Xianhua Xie
    • 1
  • Yixuan Huang
    • 1
  • Shaoming Fang
    • 1
  • Shijun Xiao
    • 1
  • Jun Ren
    • 1
  • Congying Chen
    • 1
  • Junwu Ma
    • 1
  • Lusheng Huang
    • 1
  1. 1.Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of ChinaJiangxi Agricultural UniversityNanchangChina

Personalised recommendations