Mammalian Genome

, Volume 25, Issue 3–4, pp 109–119 | Cite as

Heritability and coefficient of genetic variation analyses of phenotypic traits provide strong basis for high-resolution QTL mapping in the Collaborative Cross mouse genetic reference population

  • Fuad A. IraqiEmail author
  • Hanifa Athamni
  • Alexandra Dorman
  • Yasser Salymah
  • Ian Tomlinson
  • Aysar Nashif
  • Ariel Shusterman
  • Ervin Weiss
  • Yael Houri-Haddad
  • Richard Mott
  • Morris Soller


Most biological traits of human importance are complex in nature; their manifestation controlled by the cumulative effect of many genetic factors interacting with one another and with the individual’s life history. Because of this, mouse genetic reference populations (GRPs) consisting of collections of inbred lines or recombinant inbred lines (RIL) derived from crosses between inbred lines are of particular value in analysis of complex traits, since massive amounts of data can be accumulated on the individual lines. However, existing mouse GRPs are derived from inbred lines that share a common history, resulting in limited genetic diversity, and reduced mapping precision due to long-range gametic disequilibrium. To overcome these limitations, the Collaborative Cross (CC) a genetically highly diverse collection of mouse RIL was established. The CC, now in advanced stages of development, will eventually consist of about 500 RIL derived from reciprocal crosses of eight divergent founder strains of mice, including three wild subspecies. Previous studies have shown that the CC indeed contains enormous diversity at the DNA level, that founder haplotypes are inherited in expected frequency, and that long-range gametic disequilibrium is not present. We here present data, primarily from our own laboratory, documenting extensive genetic variation among CC lines as expressed in broad-sense heritability (H2) and by the well-known “coefficient of genetic variation,” demonstrating the ability of the CC resource to provide unprecedented mapping precision leading to identification of strong candidate genes.


Quantitative Trait Locus Recombinant Inbred Line Quantitative Trait Locus Mapping Quantitative Trait Locus Location Quantitative Trait Locus Allele 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by the Wellcome Trust grants 085906/Z/08/Z, 083573/Z/07/Z, and 075491/Z/04, Israeli Science Foundation grant (ISF)/429/09, Hendrech and Eiran Gotwert Fund for studying diabetes, and Merian and George Saiah Fund for studying infectious diseases. We thank Tel-Aviv University for their core funding and technical support and the Israeli Counsel for Higher Education for financial supporting Prof. Iraqiıs lab.


  1. Ansorge WJ (2009) Next-generation DNA sequencing techniques. New Biotechnol 25(4):195–203CrossRefGoogle Scholar
  2. Aylor DL, Valdar W, Foulds-Mathes, Buus RJ, Verdugo RA, Baric RS, Ferris MT, Frelinger JA, Heise M, Frieman MB, Gralinski LE, Bell TA, Didion JD, Hua K, Nehrenberg DL, Powell CL, Steigerwalt J, Xie Y, Kalada S, Collins FS, Yang LV, Schwartz DA, Branstetter LA, Chesler EJ, Miller DR, Spence J, Yi Liu E, McMillan L, Sarkar A, Wang J, Wang W, Zhang Q, Broman KW, Korstanje R, Durrant C, Mott R, Iraqi FA, Pomp D, Threadgill D, de Pardo-Manuel Villena F, Churchil GA (2011) Genetic analysis of complex traits in the emerging collaborative cross. Genome Res 21:1213–1222PubMedCentralPubMedCrossRefGoogle Scholar
  3. Baker PJ, Roopenian DC (2002) Genetic susceptibility to chronic periodontal disease. Microbes Infect 4:1157–1167PubMedCrossRefGoogle Scholar
  4. Baker PJ, Dixon M, Roopenian DC (2000) Genetic control of susceptibility to Porphyromonas gingivalis-induced alveolar bone loss in mice. Infect Immun 68:5864–5868PubMedCentralPubMedCrossRefGoogle Scholar
  5. Beck JA, Lloyd S, Hafezparast M, Lennon-Pierce M, Eppig JT, Festing MFW, Fisher EMC (2000) Genealogies of mouse inbred strains. Nat Genet 24:23–25PubMedCrossRefGoogle Scholar
  6. Bottomley D, Ferris MT, Aicher LD et al (2012) Expression quantitative trait loci for extreme host response to Influenza A in pre-Collaborative Cross Mice. G3 2:213–221CrossRefGoogle Scholar
  7. Broman KW (2005) The genomes of recombinant inbred lines. Genetics 169(2):1133–1146PubMedCentralPubMedCrossRefGoogle Scholar
  8. Broman KW, Kim S, Sen S, Ané C, Payseur BA (2012) Mapping quantitative trait loci onto a phylogenetic tree. Genetics 192(1):267–279PubMedCentralPubMedCrossRefGoogle Scholar
  9. Brommage R (2003) Validation and calibration of DEXA body composition in mice. Am J Physiol Endocrinol Metab 285:454–459Google Scholar
  10. Buse JB, Ginsberg HN, Bakris GL, Clark NG, Costa F, Eckel R, Fonseca V, Gerstein HC, Grundy S, Nesto RW, Pignone MP, Plutzky J, Porte D, Redberg R, Stitzel KF, Stone NJ (2007) Primary prevention of cardiovascular diseases in people with diabetes mellitus: a scientific statement from the American Heart Association and the American Diabetes Association. Circulation 115:114–126PubMedCrossRefGoogle Scholar
  11. Chesler EJ, Miller DM, Branstetter LR, Galloway LD, Jackson BL et al (2008) The Collaborative Cross at Oak Ridge National Laboratory: developing a powerful resource for systems genetics. Mamm Genome 19:382–389PubMedCentralPubMedCrossRefGoogle Scholar
  12. Churchill GA, Airey DC, Allayee H, Angel JM, Attie AD, Beatty J, Beavis WD, Belknap JK, Bennett B, Berrettini W, Bleich A, Bogue M, Broman KW, Buck KJ, Buckler E, Burmeister M, Chesler EJ, Cheverud JM, Clapcote S, Cook MN, Cox RD, Crabbe JC, Crusio WE, Darvasi A, Deschepper CF, Doerge RW, Farber CR, Forejt J, Gaile D, Garlow SJ, Geiger H, Gershenfeld H, Gordon T, Gu J, Gu W, de Haan G, Hayes NL, Heller C, Himmelbauer H, Hitzemann R, Hunter K, Hsu HC, Iraqi FA, Ivandic B, Jacob HJ et al (2004) The Collaborative Cross, a community resource for the genetic analysis of complex traits. Nat Genet 36:1133–1137PubMedCrossRefGoogle Scholar
  13. Collaborative Cross Consortium, Iraqi FA, Mahajne M, Salaymah A, Sandovsky H, Tayem, Vered K, Balmer L, Hall M, Manship G, Morahan G, Petit K, Scholten J, Tweedie K, Weerasekera L, Cleak J, Durrant C, Goodstadt L, Mott R, Yalcin B, Aylor DL, Baric R, Bell TA, Bendt KM, Brooks JD, Buus RJ, Crowley JJ, Calaway JD, Calaway ME, Cholka A, Darr DB, Didion JP, Dorman A, Everett E, Ferris MT, Mathes WF, Fu CP, Gooch TJ, Goodson SG, Garlinski LE, Hansen SD, Heise M, Hoel J, Lee S, Lenarcic AB, Liu EY, McMillan L, Magnuson TR, Manly KF, O’Brien DA, Odet F, Pan W, de Pardo-Manuel Villena F, Perou C, Pomp D, Quackenbush CR, Robinson NN, Sharpless N, Shaw GD, Spence JS, Sullivan PF, Sun W, Tarantino LM, Valdar W, Wang J, Wang W, Welsh CE, Whitmore A, Wiltshire T, Wright F, Xie Y, Yu Zn, Zhabotynsky V, Zhang Z, Zou F, Powell C, Steigerwalt J, Threadgill DW, Chesler EJ, Churchill GA, Gatti DM, Svenson KL, Yang H, Shusterman A, Nashef A, Weiss EI, Houri-Haddad Y, Soller M, Schughart K, French JE, Collins FS, Crawford N, Hunter K, Kelada SNP, Peck BCE, Reilly K, Tavarez U, Bottomly D, Hitzeman R, McWeeney SK, Frelinger J, Phillippi J, Spritz RA, Benson AK, Kim J, Legge R, Low SJ, Ma F, Martinez I, Walter J, Williams RW, Aicher L, Katze M, Rosenzweig E, Broman KW (2012) The genome architecture of the Collaborative Cross mouse genetic reference population. Genetics 190(2):389–402CrossRefGoogle Scholar
  14. Cormier RT, Dove WF (2000) Dnmt1 N/1 reduces the net growth rate and multiplicity of intestinal adenomas in C57BL/6-Multiple intestinal neoplasia (Min)/1 mice independently of p53 but demonstrates strong synergy with the Modifier of Min 1AKR resistance allele. Cancer Res 60:3965–3970PubMedGoogle Scholar
  15. Cormier RT, Bilger AJ, Lillich RB, Halberg KH (2000) The Mom1AKR intestinal tumor resistance region consists of Pla2g2a and a locus distal to D4Mit64. Oncogene 19:3182–3192PubMedCrossRefGoogle Scholar
  16. Durrant C, Tayem H, Yalcin B, Cleak J, Goodstadt L, de Pardo-Manuel Villena F, Mott R, Iraqi FA (2011) Collaborative Cross mice and their power to map host susceptibility to Aspergillus fumigatus infection. Genome Res 21:1239–1248PubMedCentralPubMedCrossRefGoogle Scholar
  17. Falconer, Mackay, Falconer DS, Mackay FC (1996) Introduction to quantitative genetics. Longman, EssexGoogle Scholar
  18. Fearnhead NS, Britton MP, Bodmer WF (2001) The ABC of APC. Hum Mol Genet 10:721–733PubMedCrossRefGoogle Scholar
  19. Fostira F, Thodi G, Sandaltzopoulos R, Fountzilas G, Yannoukakos D (2010) Mutational spectrum of APC and genotype-phenotype correlations in Greek FAP patients. BMC Cancer 10:389–396PubMedCentralPubMedCrossRefGoogle Scholar
  20. Garcia-Gonzalez F, Simmons LW, Tomkins JL, Kotiaho JS, Evans JP (2012) Comparing evolvabilities: common errors surrounding the use and calculation of coefficients of additive genetic variation. Evolution 66:2341–2349PubMedCrossRefGoogle Scholar
  21. Groden J, Thliveris A, Samowitz W, Carlson M, Gelbert L, Albertsen H, Joslyn G, Stevens J, Spirio L, Robertson M (1991) Identification and characterization of the familial adenomatous polyposis coli gene. Cell 66:589–600PubMedCrossRefGoogle Scholar
  22. Hernandez-Valladares M, Naessens J, Gibson JP, Musoke AJ, Rihet P, ole-MoiYoi OK, Iraqi FA (2004a) Confirmation and dissection of QTL controlling resistance to malaria in mice. Mamm Genome 15:390–398PubMedCrossRefGoogle Scholar
  23. Hernandez-Valladares M, Rihet P, ole-MoiYoi OK, Iraqi FA (2004b) Mapping of a new quantitative trait locus for resistance to malaria in mice by a comparative approach of human chromosome 5q31-q33. Immunogenet 56:115–117CrossRefGoogle Scholar
  24. Houle D (1992) Evolvability and variability of quantitative traits. Genetics 130:195–204PubMedCentralPubMedGoogle Scholar
  25. Iraqi F, Clapcot S, Kuman P, Heley C, Kemp S, Teale A (2000) Fine mapping of trypanosomiasis resistance QTLs in mice using advanced intercross lines. Mamm Genome 11:645–648PubMedCrossRefGoogle Scholar
  26. Iraqi FA, Behnke JM, Menge DM, Lowe AM, Teale AJ, Gibson JP, Baker LR, Wakelin DR (2003) Mapping chromosomal regions controlling resistance to gastro-intestinal worms in mice. Mamm Genome 14:184–191PubMedCrossRefGoogle Scholar
  27. Iraqi F, Churchill G, Mott R (2008) The Collaborative Cross, developing a resource for mammalian systems genetics: a status report of the Wellcome Trust cohort. Mamm Genome 19:379–381PubMedCrossRefGoogle Scholar
  28. Keane TM, Goodstadt L, Danecek P, White MA, Wong K, Yalcin B, Heger A, Agam A, Slater G et al (2011) Mouse genomic variation and its effect on phenotypes and gene regulation. Nature 14 477(7364):289–294CrossRefGoogle Scholar
  29. Kelada SNP, Aylor DL et al (2012) Genetic analysis of hematological parameters in incipient lines of the Collaborative Cross G3(2):157–166Google Scholar
  30. Keynan Y, Rubinstein E (2007) The changing face of Klebsiella pneumoniae infection in the community. Int J Antimicrob Agent 30:385–389CrossRefGoogle Scholar
  31. Kovacs A, Ben-Jacob N, Tayem H, Halperin E, Iraqi FA, Gophna U (2011) Genotype is a stronger determinant than sex of the mammalian gut microbiota. Microb Ecol 61(2):423–428PubMedCrossRefGoogle Scholar
  32. Mathes WF, Aylor DL, Miller DR, Churchill GA, Chesler EJ, de Villena F, Threadgill DW, Pomp D (2011) Architecture of energy balance traits in emerging lines of the Collaborative Cross. Am J Physiol Endocrinol Metab 300:E1124–E1134PubMedCentralPubMedCrossRefGoogle Scholar
  33. Morahan G, Balmer L, Monley D (2008) Establishment of “The Gene Mine”: a resource for rapid identification of complex trait genes. Mamm Genome 19(6):390–393PubMedCrossRefGoogle Scholar
  34. Moser AR, Dove WF, Roth KA, Gordon JI (1992) The Min (multiple intestinal neoplasia) mutation: its effect on gut epithelial cell differentiation and interaction with a modifier system. J Cell Biol 716:1517–1526CrossRefGoogle Scholar
  35. Moser AR, Mattes EM, Dove WF, Lindstrom MJ, Haag JD, Gould MN (1993) Min, a mutation in the murine Apc gene, predisposes to mammary carcinomas and focal alveolar hyperplasias. PNAS 90:8977–8981PubMedCentralPubMedCrossRefGoogle Scholar
  36. Mott R, Talbot CJ, Turri MG, Collins AC, Flint J (2000) A method for fine mapping quantitative trait loci in outbred animal stocks. PNAS 97:12649–12654PubMedCentralPubMedCrossRefGoogle Scholar
  37. Ng SB, Buckingham KJ, Lee C, Bigham AW, Tabor HK, Dent KM, Huff CD, Shannon PT, Jabs EW, Nickerson DA, Shendure J, Bamshad MJ (2010) Exome sequencing identifies the cause of a mendelian disorder. Nat Genet 42(1):30–35PubMedCentralPubMedCrossRefGoogle Scholar
  38. Petkova SB, Yuan R, Tsaih SW, Schott W, Roopenian DC, Paigen B (2008) Genetic influence on immune phenotype revealed strain-specific variations in peripheral blood lineages. Physiol Genomics 34:304–314PubMedCentralPubMedCrossRefGoogle Scholar
  39. Philip VM, Sokoloff G, Ackert-Bicknell CL et al (2011) Genetic analysis in the Collaborative Cross breeding population. Genome Res 2011:1223–1238CrossRefGoogle Scholar
  40. Polak D, Wilensky A, Shapira L, Halabi A, Goldstein D, Weiss EI et al (2009) Mouse model of experimental periodontitis induced by Porphyromonas gingivalis/Fusobacterium nucleatum infection: bone loss and host response. J Clin Periodontol 36(5):406–410PubMedCrossRefGoogle Scholar
  41. Roberts A, de Pardo-Manuel Villena F, Wang W, McMillan L, Threadgill DW (2007) The polymorphism architecture of mouse genetic resources elucidated using genome-wide resequencing data: implications for QTL discovery and systems genetics. Mamm Genome 18(6–7):473–481PubMedCentralPubMedCrossRefGoogle Scholar
  42. Shusterman A, Durrant C, Mott R, Schaefer A, Weiss EI, Iraqi FA, Houri-Haddad Y (2013a) Host susceptibility to periodontitis: mapping murine genomic regions. J Dent Res 92:438–443PubMedCrossRefGoogle Scholar
  43. Shusterman A, Salyma Y, Nashef A, Soller M, Wilensky A, Mott R, Weiss EI, Houri-Haddad Y, Iraqi FA (2013b) Genotype is an important determinant factor of host susceptibility to periodontitis in the Collaborative Cross and inbred mouse populations. BMC Genet 14:68–79PubMedCentralPubMedCrossRefGoogle Scholar
  44. Silver LM (1995) Mouse genetics: concepts and applications. Oxford University Press, OxfordGoogle Scholar
  45. Threadgill DW, Hunt KW, Williams RW (2002) Genetic dissection of complex and quantitative traits: from fantasy to reality via a community effort. Mamm Genome 16:344–355Google Scholar
  46. Valdar W, Flint J, Mott R (2006) Simulating the collaborative cross: power of QTL detection and mapping resolution in large sets of recombinant inbred strains of mice. Genetics 172:1783–1797PubMedCentralPubMedCrossRefGoogle Scholar
  47. Voelkerding KV et al (2009) Next-generation sequencing: from basic research to diagnostics. Clin Chem 55:641–658PubMedCrossRefGoogle Scholar
  48. Welsh CE, Miller RD, Manly KF, Wang J, McMillan L, Morahan G, Mott R, Iraqi FA, Threadgill DW, Pardo-Manuel de Villena F (2012) Status and access to the Collaborative Cross population. Mamm Genome 23:706–712PubMedCentralPubMedCrossRefGoogle Scholar
  49. Wilensky A, Gabet Y, Yumoto H, Houri Haddad Y, Shapira L (2005) Three-dimensional quantification of alveolar bone loss in Porphyromonas gingivalis infected mice using Micro-CT. J Periodontol 76(8):1282–1286PubMedCrossRefGoogle Scholar
  50. Yalcin B, Flint J, Mott R (2005) Using progenitor strain information to identify quantitative trait nucleotides in outbred mice. Genetics 171:673–681PubMedCentralPubMedCrossRefGoogle Scholar
  51. Yang H, Ding Y, Hutchins LN, Szatkiewicz J, Bell TA, Paigen BJ, Graber JH, de Villena FP, Churchill GA (2009) A customized and versatile high-density genotyping array for the mouse. Nat Methods 6(9):663–666PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Fuad A. Iraqi
    • 1
    Email author
  • Hanifa Athamni
    • 1
  • Alexandra Dorman
    • 1
  • Yasser Salymah
    • 1
  • Ian Tomlinson
    • 2
  • Aysar Nashif
    • 3
  • Ariel Shusterman
    • 3
  • Ervin Weiss
    • 3
  • Yael Houri-Haddad
    • 3
  • Richard Mott
    • 2
  • Morris Soller
    • 4
  1. 1.Department of Clinical Microbiology and Immunology, Sackler Faculty of MedicineTel Aviv UniversityTel AvivIsrael
  2. 2.Welcome Trust human Genome centerUniversity of OxfordOxfordUK
  3. 3.Department of Prosthodontics, Dental School at HadassahHebrew UniversityJerusalemIsrael
  4. 4.Department of Genetics, Silberman Institute of Life SciencesHebrew UniversityJerusalemIsrael

Personalised recommendations