Mammalian Genome

, Volume 25, Issue 5–6, pp 235–243 | Cite as

Exome sequencing and arrayCGH detection of gene sequence and copy number variation between ILS and ISS mouse strains

  • Laura Dumas
  • C. Michael Dickens
  • Nathan Anderson
  • Jonathan Davis
  • Beth Bennett
  • Richard A. Radcliffe
  • James M. Sikela
Article

Abstract

It has been well documented that genetic factors can influence predisposition to develop alcoholism. While the underlying genomic changes may be of several types, two of the most common and disease associated are copy number variations (CNVs) and sequence alterations of protein coding regions. The goal of this study was to identify CNVs and single-nucleotide polymorphisms that occur in gene coding regions that may play a role in influencing the risk of an individual developing alcoholism. Toward this end, two mouse strains were used that have been selectively bred based on their differential sensitivity to alcohol: the Inbred long sleep (ILS) and Inbred short sleep (ISS) mouse strains. Differences in initial response to alcohol have been linked to risk for alcoholism, and the ILS/ISS strains are used to investigate the genetics of initial sensitivity to alcohol. Array comparative genomic hybridization (arrayCGH) and exome sequencing were conducted to identify CNVs and gene coding sequence differences, respectively, between ILS and ISS mice. Mouse arrayCGH was performed using catalog Agilent 1 × 244 k mouse arrays. Subsequently, exome sequencing was carried out using an Illumina HiSeq 2000 instrument. ArrayCGH detected 74 CNVs that were strain-specific (38 ILS/36 ISS), including several ISS-specific deletions that contained genes implicated in brain function and neurotransmitter release. Among several interesting coding variations detected by exome sequencing was the gain of a premature stop codon in the alpha-amylase 2B (AMY2B) gene specifically in the ILS strain. In total, exome sequencing detected 2,597 and 1,768 strain-specific exonic gene variants in the ILS and ISS mice, respectively. This study represents the most comprehensive and detailed genomic comparison of ILS and ISS mouse strains to date. The two complementary genome-wide approaches identified strain-specific CNVs and gene coding sequence variations that should provide strong candidates to contribute to the alcohol-related phenotypic differences associated with these strains.

Supplementary material

335_2014_9502_MOESM1_ESM.xls (54 kb)
Supplementary material 1 (XLS 54 kb)
335_2014_9502_MOESM2_ESM.xlsx (11 kb)
Supplementary material 2 (XLSX 11 kb)
335_2014_9502_MOESM3_ESM.xlsx (23 kb)
Supplementary material 3 (XLSX 22 kb)
335_2014_9502_MOESM4_ESM.xls (84 kb)
Supplementary material 4 (XLS 84 kb)

References

  1. Axelsson E, Ratnakumar A, Arendt M-L, Maqbool K, Webster MT, Perloski M, Liberg O, Arnemo JM, Hedhammar A, Lindblad-Toh K (2013) The genomic signature of dog domestication reveals adaptation to a starch-rich diet. Nature 495:360–364PubMedCrossRefGoogle Scholar
  2. Bennet B, Johnson TE (1998) Development of congenics for hypnotic sensitivity to ethanol by QTL-marker-assisted counter selection. Mamm Genome 9:969–974CrossRefGoogle Scholar
  3. Bennett B, Beeson M, Gordon L, Johnson TE (2000a) Reciprocal congenics defining individual quantitative trait loci for sedative/hypnotic sensitivity to ethanol. Alcohol Clin Exp Res 26:149–157CrossRefGoogle Scholar
  4. Bennett B, Beeson M, Gordon L, Carosone-Link P, Johnson TE (2000b) Genetic dissection of quantitative trait loci specifying sensitivity to ethanol: mapping with interval-specific congenic recombinant lines. Alcohol Clin Exp Res 26:1615–1624CrossRefGoogle Scholar
  5. Bouchery EE, Harwood HJ, Sacks JJ, Simon CJ, Brewer RD (2011) Economic costs of excessive alcohol consumption in the U.S., 2006. Am J Prev Med 41(5):516–524PubMedCrossRefGoogle Scholar
  6. Brunetti-Pierri N, Berg JS, Scaglia F, Belmont J, Bacino CA, Sahoo T, Lalani SR, Graham B, Lee B, Shinawi M, Shen J, Kang SH, Pursley A, Lotze T, Kennedy G, Lansky-Shafer S, Weaver C, Roeder ER, Grebe TA, Arnold GL, Hutchison T, Reimschisel T, Amato S, Geragthy MT, Innis JW, Obersztyn E, Nowakowska B, Rosengren SS, Bader PI, Grange DK, Naqvi S, Garnica AD, Bernes SM, Fong CT, Summers A, Walters WD, Lupski JR, Stankiewicz P, Cheung SW, Patel A (2008) Recurrent reciprocal 1q21.1-1q21.2 deletions and duplications associated with microcephaly or macrocephaly and developmental and behavioral abnormalities. Nature Genet 40:1466–1471PubMedCentralPubMedCrossRefGoogle Scholar
  7. Carette JE, Guimaraes CP, Varadarajan M, Park AS, Wuethrich I, Godarova A, Kotecki M, Cochran BH, Spooner E, Ploegh HL, Brummelkamp TR (2009) Haploid genetic screens in human cells identify host factors used by pathogens. Science 326(5957):1231–1235PubMedCrossRefGoogle Scholar
  8. Collins AC (1981) A review of research using short-sleep and long-sleep mice. In: McClearn GE, Deitrich RA, Erwin VG (eds) Development of animal models as pharmacogenetic tools. U.S. Government Printing Office, Washington, DC, pp 161–170Google Scholar
  9. Consortium International Schizophrenia (2008) Rare chromosomal deletions and duplications increase risk of schizophrenia. Nature 455:178–179CrossRefGoogle Scholar
  10. Cutler G, Kassner PD (2009) Copy number variation in the mouse genome: implications for the mouse as a model organism for human disease. Cytogenet Genome Res 123(1–4):297–306PubMedCentralGoogle Scholar
  11. Darlington TM, Ehringer MA, Larson C, Phang TL, Radcliffe RA (2013) Transcriptome analysis of Inbred Long Sleep and Inbred Short Sleep Mice. Genes Brain Behav 12:263–274PubMedCentralPubMedCrossRefGoogle Scholar
  12. de Kovel CG, Trucks H, Helbig I, Mefford HC, Baker C, Leu C, Kluck C, Muhle H, von Spiczak S, Ostertag P, Obermeier T, Kleefuß-Lie AA, Hallmann K, Steffens M, Gaus V, Klein KM, Hamer HM, Rosenow F, Brilstra EH, K-N Trenité D, Marielle Swinkels MEM, Weber YG, Unterberger I, Zimprich F, Urak L, Feucht M, Fuchs K, Møller RS, Hjalgrim H, De Jonghe P, Suls A, Rückert I-M, Wichmann H-E, Franke A, Schreiber S, Nürnberg P, Elger CE, Lerche H, Stephani U, Koeleman BPC, Lindhout D, Eichler EE, Sander T (2010) Recurrent microdeletions at 15q11.2 and 16p13.11 predispose to idiopathic generalized epilepsies. Brain 133:23–32PubMedCentralPubMedCrossRefGoogle Scholar
  13. Deitrich RA (1990) Selective breeding of mice and rats for initial sensitivity to ethanol: contributions to understanding ethanol’s actions. In: Deitrich RA, Pawlowski AA (eds) Initial Sensitivity to Alcohol. National Institute of Alcohol Abuse and Alcoholism, Rockville, pp 7–60Google Scholar
  14. Dick DM, Prescott C, McGue M (2009) The genetics of substance use and substance use disorders. In: Yong-Kyu K (ed) Handbook of behavior genetics. Springer, New York, pp 433–453CrossRefGoogle Scholar
  15. Dumas LD, O’Bleness MS, Davis JM, Dickens CM, Anderson N, Keeney JG, Jackson J, Sikela M, Raznahan A, Giedd J, Rapoport J, Nagamani SSC, Erez A, Brunetti-Pierri N, Sugalski R, Lupski JR, Fingerlin T, Cheung SW, Sikela JM (2012) DUF1220-Domain Copy Number Implicated in Human Brain-Size Pathology and Evolution. The American Journal of Human Genetics 91:444–454CrossRefGoogle Scholar
  16. Ehringer MA, Sikela JM (2002) Genomic approaches to the genetics of alcoholism. Alcohol Res. Health 26:181–192Google Scholar
  17. Ehringer MA, Thompson JT, Conroy O, Xu Y, Yang F, Canniff J, Beeson M, Gordon L, Bennett B, Johnson TE, Sikela JM (2001) High-throughput sequence identification of gene coding variants within alcohol-related QTLs. Mam. Genome 12:657–663Google Scholar
  18. Ehringer MA, Thompson J, Conroy O, Yang F, Hink R, Bennett B, Johnson TE, Sikela JM (2002) Fine mapping of polymorphic alcohol-related quantitative trait loci candidate genes using interval-specific congenic recombinant mice. Alcohol Clin Exp Res 26:160–1603Google Scholar
  19. Grant BF, Dawson DA, Stinson FS, Chou SP, Dufour MC, Pickering RP (2004) The 12-month prevalence and trends in DSM-IV alcohol abuse and dependence: United States. Drug Alcohol Depend 74(3):223–234PubMedCrossRefGoogle Scholar
  20. Hui X, Zhu W, Wang Y, Lam KS, Zhang J, Wu D, Kraegen EW, Li Y, Xu A (2009) Major urinary protein-1 increases energy expenditure and improves glucose intolerance through enhancing mitochondrial function in skeletal muscle of diabetic mice. J Biol Chem 284(21):14050–14057PubMedCentralPubMedCrossRefGoogle Scholar
  21. Jaillard S, Drunat S, Bendavid C, Aboura A, Etcheverry A, Journel H, Delahaye A, Pasquier L, Bonneau D, Toutain A, Burglen L, Guichet A, Pipiras E, Gilbert-Dussardier B, Benzacken B, Martin-Coignard D, Henry C, David A, Lucas J, Mosser J, David V, Odent S, Verloes A, Dubourg C (2010) Identification of gene copy number variations in patients with mental retardation using array-CGH: novel syndromes in a large French series. Eur J Med Genet 53:66–75PubMedCrossRefGoogle Scholar
  22. Jin Z, Mu YW, Sun JY, Li XM, Gao XL, Lu J (2013) Proteome analysis of metabolic proteins (pI 4–7) in barley (Hordeum vulgare) malts and initial application in malt quality discrimination. J Agric Food Chem 61(2):402–409PubMedCrossRefGoogle Scholar
  23. Koyama I, Komine S, Iino N, Hokari S, Igarashi S, Alpers DH, Komoda T (2001) α-amylase expressed in human liver is encoded by the AMY-2B gene identified in tumorous tissues. Clin Chim Acta 309:79–83CrossRefGoogle Scholar
  24. Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows–Wheeler Transform. Bioinformatics 25:1754–1760PubMedCentralPubMedCrossRefGoogle Scholar
  25. MacLaren EJ, Sikela JM (2005) Cerebellar gene expression profiling and eQTL analysis in inbred mouse strains selected for ethanol sensitivity. Alcohol Clin Exp Res 29:1568–1579PubMedCrossRefGoogle Scholar
  26. MacLaren EJ, Bennett B, Johnson TE, Sikela JM (2006) Expression profiling identifies novel candidate genes for ethanol sensitivity QTLs. Mamm Genome 17:147–156PubMedCentralPubMedCrossRefGoogle Scholar
  27. Mandel AL, Peyrot des Gachons C, Plank KL, Alarcon S, Breslin PAS (2010) Individual differences in AMY1 gene copy number, salivary α-amylase levels, and the perception of oral starch. PLoS One 5(10):e13352PubMedCentralPubMedCrossRefGoogle Scholar
  28. Markel PD, DeFries JC, Johnson TE (1995) Use of repeated measures in an analysis of ethanol-induced loss of righting reflex in inbred long-sleep and short-sleep mice. Alcohol Clin Exp Res 19:299–304PubMedCrossRefGoogle Scholar
  29. Markel PD, Bennett B, Beeson M, Gordon L, Johnson TE (1997) Confirmation of quantitative trait loci for ethanol sensitivity in long-sleep and short-sleep mice. Genome Res 7:92–99PubMedCrossRefGoogle Scholar
  30. McClearn GE, Kakihana R (1981) Selective breeding for ethanol sensitivity: short-sleep and long-sleep mice. In: McClearn GE, Deitrich RA, Erwin VG (eds) Development of animal models as pharmacogenetic tools. U.S. Government Printing Office, Washington, DC, pp 147–159 DHHS Publication No. (ADM) 81-113Google Scholar
  31. McGeachin RL, Potter BA (1960) Amylase in isolated liver cells. J Biol Chem 235:1354–1358Google Scholar
  32. Mefford HC, Sharp AJ, Baker C, Itsara A, Jiang Z, Buysse K, Huang S, Maloney VK, Crolla JA, Baralle D, Collins A, Mercer C, Norga K, de Ravel T, Devriendt K, Bongers EMHF, de Leeuw N, Reardon W, Gimelli S, Bena F, Hennekam RC, Male A, Gaunt L, Clayton-Smith J, Simonic I, Park SM, Mehta SG, Nik-Zainal S, Woods CG, Firth HV, Parkin G, Fichera M, Reitano S, Lo Giudice M, Li KE, Casuga I, Broomer A, Conrad B, Schwerzmann M, Raber L, Gallati S, Striano P, Coppola A, Tolmie JL, Tobias ES, Lilley C, Armengol L, Spysschaert Y, Verloo P, De Coene A, Goossens L, Mortier G, Speleman F, van Binsbergen E, Nelen MR, Hochstenbach R, Poot M, Gallagher L, Gill M, McClellan J, King MC, Regan R, Skinner C, Stevenson RE, Antonarakis SE, Chen CF, Estivill X, Menten B, Gimelli G, Gribble S, Schwartz S, Sutcliffe JS, Walsh T, Knight SJL, Sebat J, Romano C, Schwartz CE, Veltman JA, de Vries BBA, Vermeesch JR, Barber JCK, Willatt L, Tassabehji M, Eichler EE (2008) Recurrent rearrangements of chromosome 1q21.1–1q21.2 and variable pediatric phenotypes. N Engl J Med 359:1685–1699PubMedCentralPubMedCrossRefGoogle Scholar
  33. Perry GH, Dominy NJ, Claw KG, Lee AS, Fiegler H, Redon R, Werner J, Villanea FA, Mountain JL, Misra R, Carter NP, Lee Ch, Stone AC (2007) Diet and the evolution of human amylase gene copy number variation. Nat Genet 39:1256–1260PubMedCentralPubMedCrossRefGoogle Scholar
  34. Pinto D, Pagnamenta AT, Klei L, Anney R, Merico D, Regan R, Conroy J, Magalhaes TR, Correia C, Abrahams BS, Almeida J, Bacchelli E, Bader GD, Bailey AJ, Baird G, Battaglia A, Berney T, Bolshakova N, Bölte S, Bolton PF, Bourgeron T, Brennan S, Brian J, Bryson SE, Carson AR, Casallo G, Casey J, Chung BH, Cochrane L, Corsello C, Crawford EL, Crossett A, Cytrynbaum C, Dawson G, de Jonge M, Delorme R, Drmic I, Duketis E, Duque F, Estes A, Farrar P, Fernandez BA, Folstein SE, Fombonne E, Freitag CM, Gilbert J, Gillberg C, Glessner JT, Goldberg J, Green A, Green J, Guter SJ, Hakonarson H, Heron EA, Hill M, Holt R, Howe JL, Hughes G, Hus V, Igliozzi R, Kim C, Klauck SM, Kolevzon A, Korvatska O, Kustanovich V, Lajonchere CM, Lamb JA, Laskawiec M, Leboyer M, Le Couteur A, Leventhal BL, Lionel AC, Liu XQ, Lord C, Lotspeich L, Lund SC, Maestrini E, Mahoney W, Mantoulan C, Marshall CR, McConachie H, McDougle CJ, McGrath J, McMahon WM, Merikangas A, Migita O, Minshew NJ, Mirza GK, Munson J, Nelson SF, Noakes C, Noor A, Nygren G, Oliveira G, Papanikolaou K, Parr JR, Parrini B, Paton T, Pickles A, Pilorge M, Piven J, Ponting CP, Posey DJ, Poustka A, Poustka F, Prasad A, Ragoussis J, Renshaw K, Rickaby J, Roberts W, Roeder K, Roge B, Rutter ML, Bierut LJ, Rice JP, Salt J, Sansom K, Sato D, Segurado R, Sequeira AF, Senman L, Shah N, Sheffield VC, Soorya L, Sousa I, Stein O, Sykes N, Stoppioni V, Strawbridge C, Tancredi R, Tansey K, Thiruvahindrapduram B, Thompson AP, Thomson S, Tryfon A, Tsiantis J, Van Engeland H, Vincent JB, Volkmar F, Wallace S, Wang K, Wang Z, Wassink TH, Webber C, Weksberg R, Wing K, Wittemeyer K, Wood S, Wu J, Yaspan BL, Zurawiecki D, Zwaigenbaum L, Buxbaum JD, Cantor RM, Cook EH, Coon H, Cuccaro ML, Devlin B, Ennis S, Gallagher L, Geschwind DH, Gill M, Haines JL, Hallmayer J, Miller J, Monaco AP, Nurnberger JI Jr, Paterson AD, Pericak-Vance MA, Schellenberg GD, Szatmari P, Vicente AM, Vieland VJ, Wijsman EM, Scherer SW, Sutcliffe JS, Betancur C (2010) Functional impact of global rare copy number variation in autism spectrum disorders. Nature 466:368–372PubMedCentralPubMedCrossRefGoogle Scholar
  35. Sampietro M, Iolascon A (1999) Molecular pathology of Crigler–Najjar type I and II and Gilbert’s Syndrome. Haematologica 84(2):150–157PubMedGoogle Scholar
  36. Samuelson LC, Keller PR, Darlington GJ, Meisler MH (1988a) Glucocorticoid and developmental regulation of amylase mRNAs in mouse liver cells. Mol Cell Biol 8:3857–3863PubMedCentralPubMedGoogle Scholar
  37. Samuelson LC, Wiebauer K, Gumuci DL, Meisler MH (1988b) Expression of the human amylase genes: recent origin of a salivary amylase promoter from an actin pseudogene. Nucleic Acids Res 16:8261–8275PubMedCentralPubMedCrossRefGoogle Scholar
  38. Samuelson LC, Biebauer K, Snow CM, Meisler MH (1990) Retroviral and pseudogene insertion sites reveal the lineage of human salivary and pancreatic amylase genes from a single gene during primate evolution. Mol Cell Biol 10:2513–2520PubMedCentralPubMedGoogle Scholar
  39. Wang K, Li M, Hakonarson H (2010) ANNOVAR: functional annotation of genetic variants from next-generation sequencing data. Nucleic Acids Res 38:e164PubMedCentralPubMedCrossRefGoogle Scholar
  40. Watkins-chow DE, Pavan WJ (2008) Genomic copy number and expression variation within the C57BL/6J inbred mouse strain. Genome Res 18(1):60–66PubMedCentralPubMedCrossRefGoogle Scholar
  41. Weischenfeldt J, Symmons O, Spitz F, Korbel JO (2013) Phenotypic impact of genomic structural variation: insights from and for human disease. Nat Rev Genet 14:125–138PubMedCrossRefGoogle Scholar
  42. Wollscheid B, Bausch-Fluck D, Henderson C, O’Brien R, Bibel M, Schiess R, Aebersold R, Watts JD (2009) Mass-spectrometric identification and relative quantification of N-linked cell surface glycoproteins. Nat Biotechnol 27(4):378–386PubMedCentralPubMedCrossRefGoogle Scholar
  43. Xu Y, Ehringer M, Yang F, Sikela JM (2001) Comparison of global brain gene expression profiles between inbred long-sleep and inbred short-sleep mice by high-density gene array hybridization. Alcohol Clin Exp Res 25:810–818PubMedCrossRefGoogle Scholar
  44. Yokouchi H, Horii A, Emi M, Tomita N, Doi S, Ogawa M, Mori T, Matsubara K (1990) Cloning and characterization of a third type of human α-amylase gene, AMY2B. Gene 90:281–286PubMedCrossRefGoogle Scholar
  45. Zhou Y, Jiang L, Rui L (2009) Identification of MUP1 as a regulator for glucose and lipid metabolism in mice. J Biol Chem 284(17):11152–11159PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Laura Dumas
    • 1
  • C. Michael Dickens
    • 2
  • Nathan Anderson
    • 1
  • Jonathan Davis
    • 1
  • Beth Bennett
    • 3
  • Richard A. Radcliffe
    • 3
  • James M. Sikela
    • 1
  1. 1.Department of Biochemistry and Molecular GeneticsUniversity of Colorado Denver School of MedicineAuroraUSA
  2. 2.Department of BiologyUniversity of MemphisMemphisUSA
  3. 3.Department of Pharmaceutical SciencesUniversity of Colorado Denver School of MedicineAuroraUSA

Personalised recommendations