Mammalian Genome

, Volume 23, Issue 9–10, pp 669–679 | Cite as

Computational tools for comparative phenomics: the role and promise of ontologies

  • Georgios V. Gkoutos
  • Paul N. Schofield
  • Robert Hoehndorf


A major aim of the biological sciences is to gain an understanding of human physiology and disease. One important step towards such a goal is the discovery of the function of genes that will lead to a better understanding of the physiology and pathophysiology of organisms, which will ultimately lead to better diagnosis and therapy. Our increasing ability to phenotypically characterise genetic variants of model organisms coupled with systematic and hypothesis-driven mutagenesis is resulting in a wealth of information that could potentially provide insight into the functions of all genes in an organism. The challenge we are now facing is to develop computational methods that can integrate and analyse such data. The introduction of formal ontologies that make their semantics explicit and accessible to automated reasoning provides the tantalizing possibility of standardizing biomedical knowledge allowing for novel, powerful queries that bridge multiple domains, disciplines, species, and levels of granularity. We review recent computational approaches that facilitate the integration of experimental data from model organisms with clinical observations in humans. These methods foster novel cross-species analysis approaches, thereby enabling comparative phenomics and leading to the potential of translating basic discoveries from the model systems into diagnostic and therapeutic advances at the clinical level.


Automate Reasoning Phenotype Information Biomedical Ontology Phenotype Ontology International Mouse Phenotyping Consortium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. No Author (2010) Mouse megascience. Nature 465(7298):526Google Scholar
  2. Abbott A (2010b) Mouse project to find each gene’s role. Nature 465(7297):410PubMedCrossRefGoogle Scholar
  3. Al-Hasani K, Vadolas J, Knaupp A, Wardan H, Voullaire L, Williamson R, Ioannou P (2005) A 191-kb genomic fragment containing the human α-globin locus can rescue α-thalassemic mice. Mamm Genome 16:847–853PubMedCrossRefGoogle Scholar
  4. Amberger J, Bocchini C, Hamosh A (2011) A new face and new challenges for Online Mendelian Inheritance in Man (OMIM®). Hum Mutat 32:564–567PubMedCrossRefGoogle Scholar
  5. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry MJ, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Tarver LI, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G (2000) Gene ontology: tool for the unification of biology. Nat Genet 25(1):25–29PubMedCrossRefGoogle Scholar
  6. Baader F, Lutz C, Suntisrivaraporn B (2005) Is tractable reasoning in extensions of the description logic EL useful in practice? In: Proceedings of the Methods for Modalities Workshop (M4M-05), Berlin, GermanyGoogle Scholar
  7. Baader F, Lutz C, Suntisrivaraporn B (2006) CEL: a polynomial-time reasoner for life science ontologies. In: Furbach U, Shankar N (eds), Proceedings of the 3rd International Joint Conference on Automated Reasoning (IJCAR ’06), Seattle, WA, August 17–20, 2006. Lecture Notes in Computer Science 4130:287–291Google Scholar
  8. Bada M, Stevens R, Goble C, Gil Y, Ashburner M, Blake JA, Cherry MJ, Harris M, Lewis S (2004) A short study on the success of the gene ontology. Web Semant 1(2):235–240CrossRefGoogle Scholar
  9. Barwise J (1989) The situation in logic. CSLI Publications, StanfordGoogle Scholar
  10. Barwise J, Etchemendy J (2002) Language, proof and logic. CSLI Publications, StanfordGoogle Scholar
  11. Blake JA, Bult CJ, Kadin JA, Richardson JE, Eppig JT, Mouse Genome DatabaseGroup (2011) The Mouse Genome Database (MGD): premier model organism resource for mammalian genomics and genetics. Nucleic Acids Res 39(suppl 1):D842–D848PubMedCrossRefGoogle Scholar
  12. Bodenreider O, Hayamizu TF, Ringwald M, DeCoronado S, Zhang S (2005) Of mice and men: aligning mouse and human anatomies. AMIA Annu Symp Proc 2005:61–65Google Scholar
  13. Bradford Y, Conlin T, Dunn N, Fashena D, Frazer K, Howe DG, Knight J, Mani P, Martin R, Moxon SA, Paddock H, Pich C, Ramachandran S, Ruef BJ, Ruzicka L, Schaper HB, Schaper K, Shao X, Singer A, Sprague J, Sprunger B, VanSlyke C, Westerfield M (2011) ZFIN: enhancements and updates to the zebrafish model organism database. Nucleic Acids Res 39(Database issue): D822–D829Google Scholar
  14. Brown S, Moore M (2012) Towards an encyclopaedia of gene function: the International Mouse Phenotyping Consortium. Dis Model Mech 5(3):289–292PubMedCrossRefGoogle Scholar
  15. Burgun A, Mougin F, Bodenreider O (2009) Two approaches to integrating phenotype and clinical information. AMIA Annu Symp Proc 2009:75–79PubMedGoogle Scholar
  16. Ceusters W, Elkin P, Smith B (2006) Referent tracking: the problem of negative findings. Stud Health Technol Inform 124:741–746PubMedGoogle Scholar
  17. Chen J, Xu H, Aronow B, Jegga A (2007) Improved human disease candidate gene prioritization using mouse phenotype. BMC Bioinform 8(1):392CrossRefGoogle Scholar
  18. Chen J, Bardes EE, Aronow BJ, Jegga AG (2009) ToppGene suite for gene list enrichment analysis and candidate gene prioritization. Nucl Acids Res 37(Web Server issue):W305–W311PubMedCrossRefGoogle Scholar
  19. Collins FS, Finnell RH, Rossant J, Wurst W (2007) A new partner for the international knockout mouse consortium. Cell 129(2):235PubMedCrossRefGoogle Scholar
  20. Cook DL, Bookstein FL, Gennari JH (2011) Physical properties of biological entities: an introduction to the ontology of physics for biology. PLoS One 6(12):e28708PubMedCrossRefGoogle Scholar
  21. Drysdale R, FlyBase Consortium (2008) FlyBase: a database for the Drosophila research community. Methods Mol Biol 420:45–59PubMedCrossRefGoogle Scholar
  22. Engel SR, Balakrishnan R, Binkley G, Christie KR, Costanzo MC, Dwight SS, Fisk DG, Hirschman JE, Hitz BC, Hong EL, Krieger CJ, Livstone MS, Miyasato SR, Nash R, Oughtred R, Park J, Skrzypek MS, Weng S, Wong ED, Dolinski K, Botstein D, Cherry JM (2010) Saccharomyces genome database provides mutant phenotype data. Nucl Acids Res 38(Database issue):D433–D436PubMedCrossRefGoogle Scholar
  23. Espinosa O, Hancock JM (2011) A gene-phenotype network for the laboratory mouse and its implications for systematic phenotyping. PLoS One 6(5):e19693PubMedCrossRefGoogle Scholar
  24. Fawcett T (2006) An introduction to ROC analysis. Pattern Recognit Lett 27(8):861–874CrossRefGoogle Scholar
  25. Gkoutos GV (2006) Towards a phenotypic semantic web. Curr Bioinform 1(2):235–246CrossRefGoogle Scholar
  26. Gkoutos GV, Green EC, Mallon AM, Hancock JM, Davidson D (2004) Building mouse phenotype ontologies. Pac Symp Biocomput 2004:178–189Google Scholar
  27. Gkoutos GV, Green EC, Mallon AM, Hancock JM, Davidson D (2005) Using ontologies to describe mouse phenotypes. Genome Biol 6(1):R8PubMedCrossRefGoogle Scholar
  28. Goble C, Stevens R (2008) State of the nation in data integration for bioinformatics. J Biomed Inform 41(5):687–693PubMedCrossRefGoogle Scholar
  29. Golbreich C, Horrocks I (2007) The obo to owl mapping, go to owl 1.1! In: Golbreich C, Kalyanpur A, Parsia B (eds), Proceedings of OWL: Experiences and Directions(OWLED-2007), Innsbruck, Austria, 6–7 June 2007.CEUR Workshop Proceedings 258, CEUR-WS.orgGoogle Scholar
  30. Grau B, Horrocks I, Motik B, Parsia B, Patelschneider P, Sattler U (2008) OWL 2: the next step for OWL. Web Semant 6(4):309–322CrossRefGoogle Scholar
  31. Groth P, Weiss B (2006) Phenotype data: a neglected resource in biomedical research? Curr Bioinform 1(3):347–358CrossRefGoogle Scholar
  32. Groth P, Pavlova N, Kalev I, Tonov S, Georgiev G, Pohlenz HD, Weiss B (2007) PhenomicDB: a new cross-species genotype/phenotype resource. Nucl Acids Res 35(Database issue):D696–D699PubMedCrossRefGoogle Scholar
  33. Gruber TR (1993) Toward principles for the design of ontologies used for knowledge sharing. In: Guarino N, Poli R (eds) Formal ontology in conceptual analysis and knowledge representation. Kluwer Academic, DeventerGoogle Scholar
  34. Gruber TR (1995) Toward principles for the design of ontologies used for knowledge sharing. Int J Hum Comput Stud 43(5–6):909–928Google Scholar
  35. Guarino N (1998) Formal ontology and information systems. In: Guarino N (ed), Proceedings of the 1st International Conference on Formal Ontologies in Information Systems. IOS Press, Amsterdam, pp 3–15Google Scholar
  36. Harris TW, Antoshechkin I, Bieri T, Blasiar D, Chan J, Chen WJ, De La Cruz N, Davis P, Duesbury M, Fang R, Fernandes J, Han M, Kishore R, Lee R, Müller HM, Nakamura C, Ozersky P, Petcherski A, Rangarajan A, Rogers A, Schindelman G, Schwarz EM, Tuli MA, Van Auken K, Wang D, Wang X, Williams G, Yook K, Durbin R, Stein LD, Sternberg PW, Spieth J (2010) WormBase: a comprehensive resource for nematode research. Nucl Acids Res 38(suppl 1):D463–D467PubMedCrossRefGoogle Scholar
  37. Hernandez-Boussard T, Whirl-Carrillo M, Hebert JM, Gong L, Owen R, Gong M, Gor W, Liu F, Truong C, Whaley R, Woon M, Zhou T, Altman RB, Klein TE (2008) The pharmacogenetics and pharmacogenomics knowledge base: accentuating the knowledge. Nucl Acids Res 36(Database issue):D913–D918PubMedGoogle Scholar
  38. Herre H, Heller B, Burek P, Hoehndorf R, Loebe F, Michalek H (2006) General Formal Ontology (GFO): A foundational ontology integrating objects and processes version 1.0, Onto-Med Report8, IMISE, University of Leipzig, Leipzig, GermanyGoogle Scholar
  39. Hilbert D (1918) Axiomatisches Denken. Math Ann 78:405–415CrossRefGoogle Scholar
  40. Hoehndorf R, Loebe F, Kelso J, Herre H (2007) Representing default knowledge in biomedical ontologies: application to the integration of anatomy and phenotype ontologies. BMC Bioinform 8(1):377CrossRefGoogle Scholar
  41. Hoehndorf R, Kelso J, Herre H (2009) The ontology of biological sequences. BMC Bioinform 10(1):377CrossRefGoogle Scholar
  42. Hoehndorf R, Oellrich A, Dumontier M, Kelso J, Rebholz-Schuhmann D, Herre H (2010a) Relations as patterns: bridging the gap between OBO and OWL. BMC Bioinform 11(1):441CrossRefGoogle Scholar
  43. Hoehndorf R, Oellrich A, Rebholz-Schuhmann D (2010b) Interoperability between phenotype and anatomy ontologies. Bioinformatics 26(24):3112–3118PubMedCrossRefGoogle Scholar
  44. Hoehndorf R, Batchelor C, Bittner T, Dumontier M, Eilbeck K, Knight R, Mungall CJ, Richardson JS, Stombaugh J, Westhof E, Zirbel CL, Leontis NB (2011a) The RNA ontology (RNAO): an ontology for integrating RNA sequence and structure data. Appl Ontol 6(1):53–89Google Scholar
  45. Hoehndorf R, Dumontier M, Gennari JH, Wimalaratne S, de Bono B, Cook DL, Gkoutos GV (2011b) Integrating systems biology models and biomedical ontologies. BMC Syst Biol 5(1):124PubMedCrossRefGoogle Scholar
  46. Hoehndorf R, Dumontier M, Oellrich A, Rebholz-Schuhmann D, Schofield PN, Gkoutos GV (2011c) Interoperability between biomedical ontologies through relation expansion, upper-level ontologies and automatic reasoning. PLoS One 6(7):e22006PubMedCrossRefGoogle Scholar
  47. Hoehndorf R, Dumontier M, Oellrich A, Wimalaratne S, Rebholz-Schuhmann D, Schofield P, Gkoutos GV (2011d) A common layer of interoperability for biomedical ontologies based on OWL EL. Bioinformatics 27(7):1001–1008PubMedCrossRefGoogle Scholar
  48. Hoehndorf R, Schofield PN, Gkoutos GV (2011) Phenomebrowser. Available at Accessed 5 Mar 2012
  49. Hoehndorf R, Schofield PN, Gkoutos GV (2011f) Phenomenet: a whole-phenome approach to disease gene discovery. Nucl Acids Res 39(18):e119PubMedCrossRefGoogle Scholar
  50. Hoehndorf R, Oellrich A, Rebholz-Schuhmann D, Schofield PN, Gkoutos GV (2012) Linking pharmgkb to phenotype studies and animal models of disease for drug repurposing. Pac Symp Biocomput 2012:388–399Google Scholar
  51. Horrocks I (2007) OBO flat file format syntax and semantics and mapping to OWL Web Ontology Language. Technical report, University of Manchester, March 2007. Available at Accessed 5 Mar 2012
  52. ISO (2007) Information technology: common logic (cl): a framework for a family of logic-based languages. Technical reportGoogle Scholar
  53. Kazakov Y (2009) Consequence-driven reasoning for Horn SHIQ ontologies. In: Proceedings of the 21st International Joint Conference on Artificial Intelligence (IJCAI 09), Pasadena, CA, July 11–17, 2009, pp 2040–2045Google Scholar
  54. Kazakov Y, Krötzsch M, Simančík F (2011) Unchain my EL reasoner. In: Proceedings of the 23rd International Workshop on Description Logics (DL10), CEUR Workshop Proceedings, vol 573, CEUR-WS.orgGoogle Scholar
  55. Kitsios GD, Tangri N, Castaldi PJ, Ioannidis JP (2010) Laboratory mouse models for the human genome-wide associations. PLoS One 5(11):e13782PubMedCrossRefGoogle Scholar
  56. Kutz O, Mossakowski T (2011) A modular consistency proof for dolce. In AAAIGoogle Scholar
  57. Lander ES (2011) Initial impact of the sequencing of the human genome. Nature 470(7333):187–197PubMedCrossRefGoogle Scholar
  58. Lee D, Redfern O, Orengo C (2007) Predicting protein function from sequence and structure. Nat Rev Mol Cell Biol 8(12):995–1005PubMedCrossRefGoogle Scholar
  59. Loewenstein Y, Raimondo D, Redfern O, Watson J, Frishman D, Linial M, Orengo C, Thornton J, Tramontano A (2009) Protein function annotation by homology-based inference. Genome Biol 10(2):207PubMedCrossRefGoogle Scholar
  60. Masuya H, Makita Y, Kobayashi N, Nishikata K, Yoshida Y, Mochizuki Y, Doi K, Takatsuki T, Waki K, Tanaka N, Ishii M, Matsushima A, Takahashi S, Hijikata A, Kozaki K, Furuichi T, Kawaji H, Wakana S, Nakamura Y, Yoshiki A, Murata T, Fukami-Kobayashi K, Mohan S, Ohara O, Hayashizaki Y, Mizoguchi R, Obata Y, Toyoda T (2011) The RIKEN integrated database of mammals. Nucl Acids Res 39(suppl 1):D861–D870PubMedCrossRefGoogle Scholar
  61. McGary KL, Park TJ, Woods JO, Cha HJ, Wallingford JB, Marcotte EM (2010) Systematic discovery of nonobvious human disease models through orthologous phenotypes. Proc Natl Acad Sci USA 107(14):6544–6549PubMedCrossRefGoogle Scholar
  62. Motik B, Grau BC, Horrocks I, Wu Z, Fokoue A, Lutz C (2009) Owl 2 web ontology language: Profiles. W3C Recommendation, 27 October 2009. Available at Accessed 5 Mar 2012
  63. Motik B, Shearer R, Horrocks I (2009b) Hypertableau reasoning for description logics. J Artif Intell Res 36:165–228Google Scholar
  64. Mungall CJ (2011) OBO flat file format 1.4 syntax and semantics draft. Technical report, Lawrence Berkeley National Laboratory. Available at Accessed 5 Mar 2012
  65. Mungall C, Gkoutos G, Smith C, Haendel M, Lewis S, Ashburner M (2010) Integrating phenotype ontologies across multiple species. Genome Biol 11(1):R2PubMedCrossRefGoogle Scholar
  66. Mungall CJ, Bada M, Berardini TZ, Deegan J, Ireland A, Harris MA, Hill DP, Lomax J (2011a) Cross-product extensions of the gene ontology. J Biomed Inform 44(1):80–86PubMedCrossRefGoogle Scholar
  67. Mungall CJ, Batchelor C, Eilbeck K (2011b) Evolution of the sequence ontology terms and relationships. J Biomed Inform 44(1):87–93PubMedCrossRefGoogle Scholar
  68. Oti M, Brunner HG (2007) The modular nature of genetic diseases. Clin Genet 71:1–11PubMedCrossRefGoogle Scholar
  69. Oti M, Huynen MA, Brunner HG (2009) The biological coherence of human phenome databases. Am J Hum Genet 85(6):801–808PubMedCrossRefGoogle Scholar
  70. Rector AL (2003) Modularisation of domain ontologies implemented in description logics and related formalisms including owl. In: K-CAP ’03: Proceedings of the 2nd International Conference on Knowledge Capture, Sanibel Island, FL, October 23–25, 2003, ACM Press, New York, pp 121–128Google Scholar
  71. Robinson PN, Koehler S, Bauer S, Seelow D, Horn D, Mundlos S (2008) The human phenotype ontology: a tool for annotating and analyzing human hereditary disease. Am J Hum Genet 83(5):610–615PubMedCrossRefGoogle Scholar
  72. Ruttenberg A, Clark T, Bug W, Samwald M, Bodenreider O, Chen H, Doherty D, Forsberg K, Gao Y, Kashyap V, Kinoshita J, Luciano J, Marshall MS, Ogbuji C, Rees J, Stephens S, Wong G, Wu E, Zaccagnini D, Hongsermeier T, Neumann E, Herman I, Cheung KH (2007) Advancing translational research with the Semantic Web. BMC Bioinform 8(Suppl 3):S2CrossRefGoogle Scholar
  73. Sardana D, Vasa S, Vepachedu N, Chen J, Gudivada RC, Aronow BJ, Jegga AG (2010) PhenoHM: human-mouse comparative phenome-genome server. Nucl Acids Res 38(Web Server issue):W165–W174PubMedCrossRefGoogle Scholar
  74. Schindelman G, Fernandes J, Bastiani C, Yook K, Sternberg P (2011) Worm phenotype ontology: integrating phenotype data within and beyond the C. elegans community. BMC Bioinform 12(1):32CrossRefGoogle Scholar
  75. Schofield PN, Hoehndorf R, Gkoutos GV (2012) Mouse genetic and phenotypic resources for human genetics. Hum Mutat 33(5):826–836PubMedCrossRefGoogle Scholar
  76. Schulz S, Suntisrivaraporn B, Baader F, Boeker M (2009) SNOMED reaching its adolescence: ontologists’ and logicians’ health check. Int J Med Inform 78(Suppl 1):S86–S94PubMedCrossRefGoogle Scholar
  77. Sirin E, Parsia B (2004) Pellet: An OWL DL reasoner. In: Haarslev V, Möller R(eds), Proceedings of the 2004 International Workshop on Description Logics, DL2004, Whistler, British Columbia, Canada, June 6–8, 2004, CEUR Workshop Proceedings, vol 104. Aachen, Germany:CEUR-WS.orgGoogle Scholar
  78. Skarnes WC, Rosen B, West AP, Koutsourakis M, Bushell W, Iyer V, Mujica AO, Thomas M, Harrow J, Cox T, Jackson D, Severin J, Biggs P, Fu J, Nefedov M, de Jong PJ, Stewart AF, Bradley A (2011) A conditional knockout resource for the genome-wide study of mouse gene function. Nature 474(7351):337–342PubMedCrossRefGoogle Scholar
  79. Smedley D, Swertz MA, Wolstencroft K, Proctor G, Zouberakis M, Bard J, Hancock JM, Schofield P (2008) Solutions for data integration in functional genomics: a critical assessment and case study. Brief Bioinform 9(6):532–544PubMedCrossRefGoogle Scholar
  80. Smith CL, Goldsmith CAW, Eppig JT (2004) The mammalian phenotype ontology as a tool for annotating, analyzing and comparing phenotypic information. Genome Biol 6(1):R7PubMedCrossRefGoogle Scholar
  81. Smith B, Ceusters W, Klagges B, Köhler J, Kumar A, Lomax J, Mungall C, Neuhaus F, Rector AL, Rosse C (2005) Relations in biomedical ontologies. Genome Biol 6(5):R46PubMedCrossRefGoogle Scholar
  82. Smith B, Ashburner M, Rosse C, Bard J, Bug W, Ceusters W, Goldberg LJ, Eilbeck K, Ireland A, Mungall CJ, Leontis N, Serra PR, Ruttenberg A, Sansone SA, Shah N, Scheuermann RH, Whetzel PL, Lewis S (2007) The OBO Foundry: coordinated evolution of ontologies to support biomedical data integration. Nat Biotech 25(11):1251–1255CrossRefGoogle Scholar
  83. Sowa JF (2000) Knowledge representation: logical, philosophical and computational foundations. Brooks/Cole, Pacific GroveGoogle Scholar
  84. Sprague J, Bayraktaroglu L, Bradford Y, Conlin T, Dunn N, Fashena D, Frazer K, Haendel M, Howe DG, Knight J, Mani P, Moxon SA, Pich C, Ramachandran S, Schaper K, Segerdell E, Shao X, Singer A, Song P, Sprunger B, Van Slyke CE, Westerfield M (2007) The Zebrafish Information Network: the zebrafish model organism database provides expanded support for genotypes and phenotypes. Nucleic Acids Res 36(Database Issue):D768–D772PubMedCrossRefGoogle Scholar
  85. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES, Mesirov JP (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 102(43):15545–15550PubMedCrossRefGoogle Scholar
  86. Suntisrivaraporn B (2008) Empirical evaluation of reasoning in lightweight DLs on life science ontologies. In: Proceedings of the 2nd Mahasarakham International Workshop on AI (MIWAI’08). Mahasarakham University, Mahasarakham, ThailandGoogle Scholar
  87. Thorisson GA, Muilu J, Brookes AJ (2009) Genotype-phenotype databases: challenges and solutions for the post-genomic era. Nat Rev Genet 10(1):9–18PubMedCrossRefGoogle Scholar
  88. Tsarkov D, Horrocks I (2006) FaCT++ description logic reasoner: System description. In: Furbach U, Shankar N (eds), Proceedings of the 3rd International Joint Conference on Automated Reasoning (IJCAR ’06), Seattle, WA, August 17–20, 2006. Lecture Notes in Computer Science 4130:292–297Google Scholar
  89. van Driel MA, Bruggeman J, Vriend G, Brunner HG, Leunissen JAM (2006) A text-mining analysis of the human phenome. Eur J Hum Genet 14(5):535–542PubMedCrossRefGoogle Scholar
  90. Wallace HA, Marques-Kranc F, Richardson M, Luna-Crespo F, Sharpe JA, Hughes J, Wood WG, Higgs DR, Smith AJ (2007) Manipulating the mouse genome to engineer precise functional syntenic replacements with human sequence. Cell 128(1):197–209PubMedCrossRefGoogle Scholar
  91. Washington NL, Haendel MA, Mungall CJ, Ashburner M, Westerfield M, Lewis SE (2009) Linking human diseases to animal models using ontology-based phenotype annotation. PLoS Biol 7(11):e1000247PubMedCrossRefGoogle Scholar
  92. Weinreich SS, Mangon R, Sikkens JJ, Teeuw ME, Cornel MC (2008) Orphanet: a European database for rare diseases. Ned Tijdschr Geneeskd 9(152):518–519Google Scholar
  93. Wolstencroft K, Lord P, Tabernero L, Brass A, Stevens R (2006) Protein classification using ontology classification. Bioinformatics 22(14):e530–e538PubMedCrossRefGoogle Scholar
  94. Xu T, Du LF, Zhou Y (2008) Evaluation of GO-based functional similarity measures using S. cerevisiae protein interaction and expression profile data. BMC Bioinform 9(1):472CrossRefGoogle Scholar
  95. Yamazaki Y, Jaiswal P (2005) Biological ontologies in rice databases. An introduction to the activities in Gramene and Oryzabase. Plant Cell Physiol 46(1):63–68PubMedCrossRefGoogle Scholar
  96. Zheng-Bradley X, Rung J, Parkinson H, Brazma A (2010) Large scale comparison of global gene expression patterns in human and mouse. Genome Biol 11(12):R124PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Georgios V. Gkoutos
    • 1
    • 3
  • Paul N. Schofield
    • 2
  • Robert Hoehndorf
    • 1
  1. 1.Department of GeneticsUniversity of CambridgeCambridgeUK
  2. 2.Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUK
  3. 3.Department of Computer ScienceUniversity of AberystwythAberystwythUK

Personalised recommendations