Advertisement

Mammalian Genome

, Volume 23, Issue 7–8, pp 404–415 | Cite as

Nprl3 is required for normal development of the cardiovascular system

  • Monika S. Kowalczyk
  • Jim R. Hughes
  • Christian Babbs
  • Luis Sanchez-Pulido
  • Dorota Szumska
  • Jacqueline A. Sharpe
  • Jacqueline A. Sloane-Stanley
  • Gillian M. Morriss-Kay
  • Leslie B. Smoot
  • Amy E. Roberts
  • Hugh Watkins
  • Shoumo Bhattacharya
  • Richard J. Gibbons
  • Chris P. Ponting
  • William G. Wood
  • Douglas R. Higgs
Article

Abstract

C16orf35 is a conserved and widely expressed gene lying adjacent to the human α-globin cluster in all vertebrate species. In-depth sequence analysis shows that C16orf35 (now called NPRL3) is an orthologue of the yeast gene Npr3 (nitrogen permease regulator 3) and, furthermore, is a paralogue of its protein partner Npr2. The yeast Npr2/3 dimeric protein complex senses amino acid starvation and appropriately adjusts cell metabolism via the TOR pathway. Here we have analysed a mouse model in which expression of Nprl3 has been abolished using homologous recombination. The predominant effect on RNA expression appears to involve genes that regulate protein synthesis and cell cycle, consistent with perturbation of the mTOR pathway. Embryos homozygous for this mutation die towards the end of gestation with a range of cardiovascular defects, including outflow tract abnormalities and ventriculoseptal defects consistent with previous observations, showing that perturbation of the mTOR pathway may affect development of the myocardium. NPRL3 is a candidate gene for harbouring mutations in individuals with developmental abnormalities of the cardiovascular system.

Keywords

Gene Ontology Ventricular Septal Defect Ventricular Septal Defect mTOR Pathway Erythroid Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was supported by Marie Curie RTN EUrythron (MRTN-CT-2004-005499 to MSK), European Molecular Biology Organisation (ALT 325-2008 to LSP), Medical Research Council [Chris P. Ponting (C.P.P.) laboratory and Douglas R. Higgs (D.R.H.) laboratory], and the National Institute of Health Biomedical Research Centre Programme (D.R.H.) laboratory. We thank Dr. Taavi Neklesa for critically reading the manuscript. Thanks to Liz Ormondroyd from the Department of Cardiovascular Medicine (John Radcliffe Hospital, Oxford, UK) for collecting patients for the study. We also thank Pik-Shan Li, Christina Rode, and Sue Butler for assistance with transgenic lines production, breeding, and genotyping. We thank the patients for participation in this study.

Conflict of interest

The authors have no conflicts of interests to declare.

Supplementary material

335_2012_9398_MOESM1_ESM.xls (1.4 mb)
Supplementary material 1 (XLS 1442 kb)
335_2012_9398_MOESM2_ESM.pdf (1.3 mb)
Supplementary material 2 (PDF 1371 kb)

References

  1. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402PubMedCrossRefGoogle Scholar
  2. Aravind L, Anantharaman V, Balaji S, Babu MM, Iyer LM (2005) The many faces of the helix-turn-helix domain: transcription regulation and beyond. FEMS Microbiol Rev 29:231–262PubMedGoogle Scholar
  3. Baudot A, Jacq B, Brun C (2004) A scale of functional divergence for yeast duplicated genes revealed from analysis of the protein–protein interaction network. Genome Biol 5:R76PubMedCrossRefGoogle Scholar
  4. da Huang W, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4:44–57CrossRefGoogle Scholar
  5. Dolznig H, Boulme F, Stangl K, Deiner EM, Mikulits W, Beug H, Mullner EW (2001) Establishment of normal, terminally differentiating mouse erythroid progenitors: molecular characterization by cDNA arrays. FASEB J 15:1442–1444PubMedGoogle Scholar
  6. Eddy SR (1996) Hidden Markov models. Curr Opin Struct Biol 6:361–365PubMedCrossRefGoogle Scholar
  7. Finn RD, Mistry J, Tate J, Coggill P, Heger A, Pollington JE, Gavin OL, Gunasekaran P, Ceric G, Forslund K et al (2010) The Pfam protein families database. Nucleic Acids Res 38:D211–D222PubMedCrossRefGoogle Scholar
  8. Gene Ontology Consortium (2010) The gene ontology in 2010: extensions and refinements. Nucleic Acids Res 38:D331–D335CrossRefGoogle Scholar
  9. Guertin DA, Stevens DM, Thoreen CC, Burds AA, Kalaany NY, Moffat J, Brown M, Fitzgerald KJ, Sabatini DM (2006) Ablation in mice of the mTORC components raptor, rictor, or mLST8 reveals that mTORC2 is required for signaling to Akt-FOXO and PKCalpha, but not S6K1. Dev Cell 11:859–871PubMedCrossRefGoogle Scholar
  10. Haak MC, Bartelings MM, Jackson DG, Webb S, van Vugt JMG, Gittenberger-de Groot AC (2002) Increased nuchal translucency is associated with jugular lymphatic distension. Hum Reprod 17:1086–1092PubMedCrossRefGoogle Scholar
  11. Hardwick JS, Kuruvilla FG, Tong JK, Shamji AF, Schreiber SL (1999) Rapamycin-modulated transcription defines the subset of nutrient-sensitive signaling pathways directly controlled by the Tor proteins. Proc Natl Acad Sci USA 96:14866–14870PubMedCrossRefGoogle Scholar
  12. Hatton CS, Wilkie AO, Drysdale HC, Wood WG, Vickers MA, Sharpe J, Ayyub H, Pretorius IM, Buckle VJ, Higgs DR (1990) Alpha-thalassemia caused by a large (62 kb) deletion upstream of the human alpha globin gene cluster. Blood 76:221–227PubMedGoogle Scholar
  13. Higgins DG, Thompson JD, Gibson TJ (1996) Using CLUSTAL for multiple sequence alignments. Methods Enzymol 266:383–402PubMedCrossRefGoogle Scholar
  14. Hughes JR, Cheng JF, Ventress N, Prabhakar S, Clark K, Anguita E, De Gobbi M, de Jong P, Rubin E, Higgs DR (2005) Annotation of cis-regulatory elements by identification, subclassification, and functional assessment of multispecies conserved sequences. Proc Natl Acad Sci USA 102:9830–9835PubMedCrossRefGoogle Scholar
  15. Inoki K, Corradetti MN, Guan KL (2005) Dysregulation of the TSC-mTOR pathway in human disease. Nat Genet 37:19–24PubMedCrossRefGoogle Scholar
  16. Jones DT (1999) Protein secondary structure prediction based on position-specific scoring matrices. J Mol Biol 292:195–202PubMedCrossRefGoogle Scholar
  17. Jordan PW, Klein F, Leach DR (2007) Novel roles for selected genes in meiotic DNA processing. PLoS Genet 3:e222PubMedCrossRefGoogle Scholar
  18. Kowalczyk MS, Hughes JR, Garrick D, Lynch MD, Sharpe JA, Sloane-Stanley JA, McGowan SJ, De Gobbi M, Hosseini M, Vernimmen D et al (2012) Intragenic enhancers act as alternative promoters. Mol Cell 45:447–458PubMedCrossRefGoogle Scholar
  19. Lower KM, Hughes JR, De Gobbi M, Henderson S, Viprakasit V, Fisher C, Goriely A, Ayyub H, Sloane-Stanley J, Vernimmen D et al (2009) Adventitious changes in long-range gene expression caused by polymorphic structural variation and promoter competition. Proc Natl Acad Sci USA 106:21771–21776PubMedCrossRefGoogle Scholar
  20. Lunardi A, Chiacchiera F, D’Este E, Carotti M, Dal Ferro M, Di Minin G, Del Sal G, Collavin L (2009) The evolutionary conserved gene C16orf35 encodes a nucleo-cytoplasmic protein that interacts with p73. Biochem Biophys Res Commun 388:428–433PubMedCrossRefGoogle Scholar
  21. Maciukenas M (1994) Treetool 2.0.2Google Scholar
  22. McClellan AJ, Xia Y, Deutschbauer AM, Davis RW, Gerstein M, Frydman J (2007) Diverse cellular functions of the Hsp90 molecular chaperone uncovered using systems approaches. Cell 131:121–135PubMedCrossRefGoogle Scholar
  23. Mitiku N, Baker JC (2007) Genomic analysis of gastrulation and organogenesis in the mouse. Dev Cell 13:897–907PubMedCrossRefGoogle Scholar
  24. Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5:621–628PubMedCrossRefGoogle Scholar
  25. Musso G, Zhang Z, Emili A (2007) Retention of protein complex membership by ancient duplicated gene products in budding yeast. Trends Genet 23:266–269PubMedCrossRefGoogle Scholar
  26. Nagy A, Gertsenstein M, Vintersten K, Behringer R (2003) Manipulating the mouse embryo: a laborartory manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring HarborGoogle Scholar
  27. Neklesa TK, Davis RW (2009) A genome-wide screen for regulators of TORC1 in response to amino acid starvation reveals a conserved Npr2/3 complex. PLoS Genet 5:e1000515PubMedCrossRefGoogle Scholar
  28. Notredame C, Higgins DG, Heringa J (2000) T-Coffee: a novel method for fast and accurate multiple sequence alignment. J Mol Biol 302:205–217PubMedCrossRefGoogle Scholar
  29. Pan X, Ye P, Yuan DS, Wang X, Bader JS, Boeke JD (2006) A DNA integrity network in the yeast Saccharomyces cerevisiae. Cell 124:1069–1081PubMedCrossRefGoogle Scholar
  30. Powers T, Walter P (1999) Regulation of ribosome biogenesis by the rapamycin-sensitive TOR-signaling pathway in Saccharomyces cerevisiae. Mol Biol Cell 10:987–1000PubMedGoogle Scholar
  31. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  32. Schneider JE, Bose J, Bamforth SD, Gruber AD, Broadbent C, Clarke K, Neubauer S, Lengeling A, Bhattacharya S (2004) Identification of cardiac malformations in mice lacking Ptdsr using a novel high-throughput magnetic resonance imaging technique. BMC Dev Biol 4:16PubMedCrossRefGoogle Scholar
  33. Shioi T, McMullen JR, Kang PM, Douglas PS, Obata T, Franke TF, Cantley LC, Izumo S (2002) Akt/protein kinase B promotes organ growth in transgenic mice. Mol Cell Biol 22:2799–2809PubMedCrossRefGoogle Scholar
  34. Shioi T, McMullen JR, Tarnavski O, Converso K, Sherwood MC, Manning WJ, Izumo S (2003) Rapamycin attenuates load-induced cardiac hypertrophy in mice. Circulation 107:1664–1670PubMedCrossRefGoogle Scholar
  35. Soding J, Biegert A, Lupas AN (2005) The HHpred interactive server for protein homology detection and structure prediction. Nucleic Acids Res 33:W244–W248PubMedCrossRefGoogle Scholar
  36. Sonnhammer EL, Hollich V (2005) Scoredist: a simple and robust protein sequence distance estimator. BMC Bioinform 6:108CrossRefGoogle Scholar
  37. Szumska D, Pieles G, Essalmani R, Bilski M, Mesnard D, Kaur K, Franklyn A, El Omari K, Jefferis J, Bentham J et al (2008) VACTERL/caudal regression/Currarino syndrome-like malformations in mice with mutation in the proprotein convertase Pcsk5. Genes Dev 22:1465–1477PubMedCrossRefGoogle Scholar
  38. Tong AH, Lesage G, Bader GD, Ding H, Xu H, Xin X, Young J, Berriz GF, Brost RL, Chang M et al (2004) Global mapping of the yeast genetic interaction network. Science 303:808–813PubMedCrossRefGoogle Scholar
  39. Trapnell C, Pachter L, Salzberg SL (2009) TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25:1105–1111PubMedCrossRefGoogle Scholar
  40. Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, Salzberg SL, Wold BJ, Pachter L (2010) Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 28:511–515PubMedCrossRefGoogle Scholar
  41. Wang X, Proud CG (2006) The mTOR pathway in the control of protein synthesis. Physiology (Bethesda) 21:362–369CrossRefGoogle Scholar
  42. Wilkie AO, Lamb J, Harris PC, Finney RD, Higgs DR (1990) A truncated human chromosome 16 associated with alpha thalassaemia is stabilized by addition of telomeric repeat (TTAGGG)n. Nature 346:868–871PubMedCrossRefGoogle Scholar
  43. Wu CH, Apweiler R, Bairoch A, Natale DA, Barker WC, Boeckmann B, Ferro S, Gasteiger E, Huang H, Lopez R et al (2006) The Universal Protein Resource (UniProt): an expanding universe of protein information. Nucleic Acids Res 34:D187–D191PubMedCrossRefGoogle Scholar
  44. Yoshizawa S, Rasubala L, Ose T, Kohda D, Fourmy D, Maenaka K (2005) Structural basis for mRNA recognition by elongation factor SelB. Nat Struct Mol Biol 12:198–203PubMedCrossRefGoogle Scholar
  45. Zhang Y (2008) I-TASSER server for protein 3D structure prediction. BMC Bioinform 9:40CrossRefGoogle Scholar
  46. Zhang D, Contu R, Latronico MV, Zhang J, Rizzi R, Catalucci D, Miyamoto S, Huang K, Ceci M, Gu Y et al (2010) MTORC1 regulates cardiac function and myocyte survival through 4E-BP1 inhibition in mice. J Clin Invest 120:2805–2816PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Monika S. Kowalczyk
    • 1
  • Jim R. Hughes
    • 1
  • Christian Babbs
    • 1
  • Luis Sanchez-Pulido
    • 2
  • Dorota Szumska
    • 3
  • Jacqueline A. Sharpe
    • 1
  • Jacqueline A. Sloane-Stanley
    • 1
  • Gillian M. Morriss-Kay
    • 4
  • Leslie B. Smoot
    • 5
  • Amy E. Roberts
    • 5
  • Hugh Watkins
    • 3
  • Shoumo Bhattacharya
    • 3
  • Richard J. Gibbons
    • 1
  • Chris P. Ponting
    • 2
  • William G. Wood
    • 1
  • Douglas R. Higgs
    • 1
  1. 1.MRC Molecular Haematology Unit, Weatherall Institute of Molecular MedicineUniversity of OxfordOxfordUK
  2. 2.MRC Functional Genomics Unit, Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUK
  3. 3.Department of Cardiovascular Medicine and Wellcome Trust Centre for Human GeneticsUniversity of OxfordOxfordUK
  4. 4.Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUK
  5. 5.Department of CardiologyChildren’s Hospital BostonBostonUSA

Personalised recommendations