Mammalian Genome

, Volume 21, Issue 11–12, pp 583–591 | Cite as

Hypothalamic expression of porcine leptin receptor (LEPR), neuropeptide Y (NPY), and cocaine- and amphetamine-regulated transcript (CART) genes is influenced by LEPR genotype

  • Cristina Óvilo
  • Almudena Fernández
  • Ana I. Fernández
  • Josep M. Folch
  • Luis Varona
  • Rita Benítez
  • Yolanda Nuñez
  • Carmen Rodríguez
  • Luis Silió
Article

Abstract

The leptin receptor (LEPR) is a key gene in the control of food intake and energy homeostasis. The sequence variant LEPR{NM_001024587.1}:c.1987C>T has been associated with growth, fatness, and body composition in several pig populations. The purpose of this work was to confirm the phenotypic effects of this SNP in two new experimental backcrosses involving Iberian, Landrace, and Duroc breeds, and to evaluate the quantitative effects of the SNP on the hypothalamic expression of LEPR and two other downstream genes. Results indicate significant additive effects of the SNP on body weight, back fat thickness, and hypothalamic LEPR gene expression in both populations. Allele T fixed in the Iberian breed is systematically associated with a higher growth and fat deposition and leads to an intense reduction of LEPR hypothalamic expression, providing new functional evidence that supports the causality of the analyzed SNP with respect to previously reported and newly observed phenotypic effects. Also, some effects of the LEPR genotype on neuropeptide Y (NPY) and cocaine- and amphetamine-regulated transcript (CART) genes are detected, although they are conditioned by the breed. Finally, a change in mRNA structure and an increase in free energy is predicted for allele T, agreeing with a cis-acting functional effect on mRNA stability, which also supports the causality hypothesis. The lower expression of the LEPR gene in Iberian pigs fits with obesity by leptin resistance observed in this breed. A reduction in leptin signaling could thus be considered one of the determinants of the obese phenotype characteristic of Iberian breed.

Notes

Acknowledgments

This study was supported by INIA CPE03-010 and MICINN AGL2008-04818-C03 grants. We are grateful to Wendy Rauw for useful revision of the manuscript, and to Nines López (INIA), Ingrid Riart (IRTA), and José María Borrás and Felix Grau (INGA FOOD S.A.) for technical assistance in sampling, genotyping, phenotyping, and animal management.

References

  1. Amills M, Villalba D, Tor M, Mercadé A, Gallardo D et al (2008) Plasma leptin levels in pigs with different leptin and leptin receptor genotypes. J Anim Breed Genet 125(4):228–233CrossRefPubMedGoogle Scholar
  2. Balthasar N (2006) Genetic dissection of neuronal pathways controlling energy homeostasis. Obesity 14:222S–227SCrossRefPubMedGoogle Scholar
  3. Bewick GA, Gardiner JV, Dhillo WS, Kent AS, White NE et al (2005) Postembryonic ablation of AgRP neurons in mice leads to a lean, hypophagic phenotype. FASEB J 19:1680–1682PubMedGoogle Scholar
  4. Bray NJ, Buckland PR, Owen MJ, O’Donovan MC (2003) Cis-acting variation in the expression of a high proportion of genes in human brain. Hum Genet 113(2):149–153PubMedGoogle Scholar
  5. Chen H, Charlat O, Tartaglia LA, Woolf EA, Weng X et al (1996) Evidence that the diabetes gene encodes the leptin receptor: identification of a mutation in the leptin receptor gene in db/db mice. Cell 84:491–495CrossRefPubMedGoogle Scholar
  6. Chen CC, Chang T, Su HY (2004) Characterization of porcine leptin receptor polymorphisms and their association with reproduction and production traits. Anim Biotechnol 15:89–102CrossRefPubMedGoogle Scholar
  7. Chmurzynska A, Mackowski M, Szydlowski M, Melonek J, Kamyczek M et al (2004) Polymorphism of intronic microsatellites in the A-FABP and LEPR genes and its association with productive traits in the pig. J Anim Feed Sci 13:615–624Google Scholar
  8. Chua SC Jr, Chung WK, Wu-Peng S, Zhang Y, Liu SM et al (1996) Phenotypes of mouse diabetes and rat fatty due to mutations in the OB (leptin) receptor. Science 271:994–996CrossRefPubMedGoogle Scholar
  9. Clément K, Vaisse C, Lahlou N, Cabrol S, Pelloux V et al (1998) A mutation in the human leptin receptor gene causes obesity and pituitary dysfunction. Nature 392:398–401CrossRefPubMedGoogle Scholar
  10. Cowley MA, Smart JL, Rubinstein M, Cerdán MG, Diano S et al (2001) Leptin activates anorexigenic POMC neurons through a neural network in the arcuate nucleus. Nature 411:480–484CrossRefPubMedGoogle Scholar
  11. Dhillo WS, Small CJ, Stanley SA, Jethwa PH, Seal LJ et al (2002) Hypothalamic interactions between neuropeptide Y, agouti-related protein, cocaine- and amphetamine-regulated transcript and alpha-melanocyte-stimulating hormone in vitro in male rats. J Neuroendocrinol 14(9):725–730CrossRefPubMedGoogle Scholar
  12. Farooqi IS, Wangensteen T, Collins S, Kimber W, Matarese G et al (2007) Clinical and molecular genetic spectrum of congenital deficiency of the leptin receptor. N Engl J Med 356(3):237–247CrossRefPubMedGoogle Scholar
  13. Fernandez-Figares I, Lachica M, Nieto R, Rivera-Ferre MG, Aguilera JF (2007) Serum profile of metabolites and hormones in obese (Iberian) and lean (Landrace) growing gilts fed balanced or lysine deficient diets. Livestock Sci 110:73–81CrossRefGoogle Scholar
  14. Friedman JM, Halaas JL (1998) Leptin and the regulation of body weight in mammals. Nature 395:763–769CrossRefPubMedGoogle Scholar
  15. García de Yébenes E, Li S, Fournier A, St-Pierre S, Pelletier G (1995) Regulation of proopiomelanocortin gene expression by neuropeptide Y in the rat arcuate nucleus. Brain Res 674(1):112–116CrossRefPubMedGoogle Scholar
  16. Gong Y, Ishida-Takahashi R, Villanueva EC, Fingar DC, Münzberg H et al (2007) The long form of the leptin receptor regulates STAT5 and ribosomal protein S6 via alternate mechanisms. J Biol Chem 282(42):31019–31027CrossRefPubMedGoogle Scholar
  17. Gonzalez-Añover P, Encinas T, Torres-Rovira L, Pallares P, Muñoz-Frutos J et al (2010) Ovulation rate, embryo mortality and intrauterine growth retardation in obese swine with gene polymorphisms for leptin and melanocortin receptors. Theriogenology (in press) (doi:10.1016/j.theriogenology.2010.07.009)
  18. Higuchi H, Niki T, Shiiya T (2008) Feeding behavior and gene expression of appetite-related neuropeptides in mice lacking for neuropeptide Y Y5 receptor subclass. World J Gastroenterol 14(41):6312–6317CrossRefPubMedGoogle Scholar
  19. Johnson AD, Wang D, Sadee W (2005) Polymorphisms affecting gene regulation and mRNA processing: broad implications for pharmacogenetics. Pharmacol Ther 106(1):19–38CrossRefPubMedGoogle Scholar
  20. Johnson AD, Zhang Y, Papp AC, Pinsonneault JK, Lim JE et al (2008) Polymorphisms affecting gene transcription and mRNA processing in pharmacogenetic candidate genes: detection through allelic expression imbalance in human target tissues. Pharmacogenet Genomics 18(9):781–791CrossRefPubMedGoogle Scholar
  21. Kloek C, Haq AK, Dunn SL, Lavery HJ, Banks AS et al (2002) Regulation of Jak kinases by intracellular leptin receptor sequences. J Biol Chem 277(44):41547–41555CrossRefPubMedGoogle Scholar
  22. Kristensen P, Judge ME, Thim L, Ribel U, Christjansen KN et al (1998) Hypothalamic CART is a new anorectic peptide regulated by leptin. Nature 393:72–76CrossRefPubMedGoogle Scholar
  23. Lee GH, Proenca R, Montez JM, Carroll KM, Darvishzadeh JG et al (1996) Abnormal splicing of the leptin receptor in diabetic mice. Nature 379:632–635CrossRefPubMedGoogle Scholar
  24. Leibel RL, Chung WK, Chua SC (1997) The molecular genetics of rodent single gene obesities. J Biol Chem 272(51):31937–31940CrossRefPubMedGoogle Scholar
  25. López-Bote C (1998) Sustained utilization of the Iberian pig breed. Meat Sci 49:S17–S27CrossRefGoogle Scholar
  26. Mackowski M, Szymoniak K, Szydlowski M, Kamyczek M, Eckert R et al (2005) Missense mutations in exon 4 of the porcine LEPR gene encoding extracellular domain and their association with fatness traits. Anim Genet 36:135–137CrossRefPubMedGoogle Scholar
  27. McAlister ED, Van Vugt DA (2004) Effect of leptin administration versus re-feeding on hypothalamic neuropeptide gene expression in fasted male rats. Can J Physiol Pharmacol 82(12):1128–1134CrossRefPubMedGoogle Scholar
  28. Millington GWM (2007) The role of proopiomelanocortin (POMC) neurons in feeding behaviour. Nutr Metab (Lond) 4:18–34CrossRefGoogle Scholar
  29. Miraglia del Giudice E, Santoro N, Cirillo G, D’Urso L, Di Toro R et al (2001) Mutational screening of the CART gene in obese children. Diabetes 50:2157–2160CrossRefGoogle Scholar
  30. Morales J, Pérez JF, Baucells MD, Mourot J, Gasa J (2002) Comparative digestibility and lipogenic activity in Landrace and Iberian finishing pigs fed ad libitum corn- and corn–sorghum–acorn-based diets. Livest Prod Sci 77:195–205CrossRefGoogle Scholar
  31. Muñoz G, Óvilo C, Silió L, Tomás A, Noguera JL et al (2009) Single and joint population analyses of two experimental pig crosses to confirm QTL on SSC6 and LEPR effects on fatness and growth traits. J Anim Sci 87:459–468CrossRefPubMedGoogle Scholar
  32. Muñoz G, Alcazar E, Fernández A, Barragán C, Carrasco A et al (2010) Effects of porcine MC4R and LEPR polymorphisms on economic traits in Duroc x Iberian crossbred pigs. Meat Sci (accepted) Google Scholar
  33. Murphy KG (2005) Dissecting the role of cocaine and amphetamine-regulated transcript (CART) in the control of appetite. Brief Funct Genomic Proteomic 4(2):95–111CrossRefPubMedGoogle Scholar
  34. Myers MG Jr (2004) Leptin receptor signaling and the regulation of mammalian physiology. Recent Prog Horm Res 59:287–304CrossRefPubMedGoogle Scholar
  35. Neel JV (1962) Diabetes mellitus: a “thrifty” genotype rendered detrimental by “progress”? Am J Hum Genet 14:353–362PubMedGoogle Scholar
  36. Nunn AVW, Bell JD, Guy GW (2009) Lifestyle-induced metabolic inflexibility and accelerated ageing syndrome: insulin resistance, friend or foe? Nutr Metab (Lond) 6:16CrossRefGoogle Scholar
  37. Óvilo C, Pérez-Enciso M, Barragán C, Clop A, Rodríguez MC et al (2000) A QTL for intramuscular fat and back fat thickness is located on porcine chromosome 6. Mamm Genome 11:344–346CrossRefPubMedGoogle Scholar
  38. Óvilo C, Fernández A, Noguera JL, Barragán C, Letón R et al (2005) Fine mapping of porcine chromosome 6 QTL and LEPR effects on body composition in multiple generations of an Iberian by Landrace intercross. Genet Res 85:57–67CrossRefPubMedGoogle Scholar
  39. Robertson SA, Leinninger GM, Myers MG (2008) Molecular and neural mediators of leptin action. Physiol Behav 94(5):637–642CrossRefPubMedGoogle Scholar
  40. Rodríguez MC, Fernández A, Carrasco C, García A, Gómez E et al (2010) Effect of LEPR c.2002C>T SNP on feed intake and growth in heavy Duroc x Iberian crossbred pigs. In: Proceedings of the ninth world congress on genetics applied to livestock production, Leipzig, 1–6 August 2010Google Scholar
  41. Schwartz MW, Porte D (2005) Diabetes, obesity, and the brain. Science 307:375–379CrossRefPubMedGoogle Scholar
  42. Schwartz MW, Baskin DG, Bukowski TR, Kuijper JL, Foster D et al (1996) Specificity of leptin action on elevated blood glucose levels and hypothalamic neuropeptide Y gene expression in ob/ob mice. Diabetes 45(4):531–535CrossRefPubMedGoogle Scholar
  43. Stratigopoulos G, LeDuc CA, Matsuoka N, Gutman R, Rausch R et al (2008) Functional consequences of the human leptin receptor (LEPR) Q223R transversion. Obesity 17:126–135CrossRefPubMedGoogle Scholar
  44. Tartaglia LA (1997) The leptin receptor. J Biol Chem 272(10):6093–6096PubMedGoogle Scholar
  45. Toro MA, Rodrigañez J, Silió L, Rodríguez C (2000) Genealogical analysis of a closed herd of black hairless Iberian pigs. Conserv Biol 14(6):1843–1851CrossRefGoogle Scholar
  46. Van de Wall E, Leshan R, Xu AW, Balthasar N, Coppari R et al (2008) Collective and individual functions of leptin receptor modulated neurons controlling metabolism and ingestion. Endocrinology 149(4):1773–1785CrossRefPubMedGoogle Scholar
  47. Wang D, Sadée W (2006) Searching for polymorphisms that affect gene expression and mRNA processing: example ABCB1 (MDR1). Am Assoc Pharm Sci J 8(3):E515–E520Google Scholar
  48. Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31(13):3406–3415CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Cristina Óvilo
    • 1
  • Almudena Fernández
    • 1
  • Ana I. Fernández
    • 1
  • Josep M. Folch
    • 2
  • Luis Varona
    • 3
  • Rita Benítez
    • 1
  • Yolanda Nuñez
    • 1
  • Carmen Rodríguez
    • 1
  • Luis Silió
    • 1
  1. 1.Departmento de Mejora Genética AnimalINIAMadridSpain
  2. 2.Departmento de Ciència Animal i dels Aliments, Facultat de VeterinàriaUABBarcelonaSpain
  3. 3.Area Producció AnimalUdL-IRTALleidaSpain

Personalised recommendations