Mammalian Genome

, Volume 22, Issue 1–2, pp 66–82 | Cite as

Unraveling the genetics of otitis media: from mouse to human and back again

  • Marie S. Rye
  • Mahmood F. Bhutta
  • Michael T. Cheeseman
  • David Burgner
  • Jenefer M. Blackwell
  • Steve D. M. Brown
  • Sarra E. Jamieson
Article

Abstract

Otitis media (OM) is among the most common illnesses of early childhood, characterised by the presence of inflammation in the middle ear cavity. Acute OM and chronic OM with effusion (COME) affect the majority of children by school age and have heritability estimates of 40–70%. However, the majority of genes underlying this susceptibility are, as yet, unidentified. One method of identifying genes and pathways that may contribute to OM susceptibility is to look at mouse mutants displaying a comparable phenotype. Single-gene mouse mutants with OM have identified a number of genes, namely, Eya4, Tlr4, p73, MyD88, Fas, E2f4, Plg, Fbxo11, and Evi1, as potential and biologically relevant candidates for human disease. Recent studies suggest that this “mouse-to-human” approach is likely to yield relevant data, with significant associations reported between polymorphisms at the FBXO11, TLR4, and PAI1 genes and disease in humans. An association between TP73 and chronic rhinosinusitis has also been reported. In addition, the biobanks of available mouse mutants provide a powerful resource for functional studies of loci identified by future genome-wide association studies of OM in humans. Mouse models of OM therefore are an important component of current approaches attempting to understand the complex genetic susceptibility to OM in humans, and which aim to facilitate the development of preventative and therapeutic interventions for this important and common disease.

References

  1. Acevedo-Arozena A, Wells S, Potter P, Kelly M, Cox RD et al (2008) ENU mutagenesis, a way forward to understand gene function. Annu Rev Genomics Hum Genet 9:49–69CrossRefPubMedGoogle Scholar
  2. Akira S, Takeda K (2004) Toll-like receptor signalling. Nat Rev Immunol 4:499–511CrossRefPubMedGoogle Scholar
  3. Alpay HC, Etem EO, Kaygusuz I, Yüce H, Karlidag T et al (2010) Evaluation of the polymorphism in the Toll-like receptor 4 (TLR4) genes of tympanosclerosis patients. Auris Nasus Larynx 37:29–32CrossRefPubMedGoogle Scholar
  4. Alper CM, Winther B, Hendley JO, Doyle WJ (2009) Cytokine polymorphisms predict the frequency of otitis media as a complication of rhinovirus and RSV infections in children. Eur Arch Otorhinolaryngol 226:199–205CrossRefGoogle Scholar
  5. Beckers J, Wurst W, Hrabe de Angelis M (2009) Towards better mouse models: enhanced genotypes, systemic phenotyping and envirotype modelling. Nat Rev Genet 10:371–380CrossRefPubMedGoogle Scholar
  6. Bluestone CD (1998) Epidemiology and pathogenesis of chronic suppurative otitis media: implications for prevention and treatment. Int J Pediatr Otorhinolaryngol 42:207–223CrossRefPubMedGoogle Scholar
  7. Bluestone CD, Klein JO (2007) Otitis media in infants and children, 4th edn. BC Decker, Hamilton, ONGoogle Scholar
  8. Borsani G, DeGrandi A, Ballabio A, Bulfone A, Bernard L et al (1999) EYA4, a novel vertebrate gene related to Drosophila eyes absent. Hum Mol Genet 8:11–23CrossRefPubMedGoogle Scholar
  9. Bossé Y, Bacot F, Montpetit A, Rung J, Qu H-Q et al (2009) Identification of susceptibility genes for complex diseases using pooling-based genome-wide association scans. Hum Genet 125:305–318CrossRefPubMedGoogle Scholar
  10. Brown SDM, Balling R (2001) Systematic approaches to mouse mutagenesis. Curr Opin Genet Dev 11:268–273CrossRefPubMedGoogle Scholar
  11. Brown SDM, Hardisty-Hughes RE, Mburu P (2008) Quiet as a mouse: dissecting the molecular and genetic basis of hearing. Nat Rev Genet 9:277–290CrossRefPubMedGoogle Scholar
  12. Brown SDM, Wurst W, Kuhn R, Hancock JM (2009) The functional annotation of mammalian genomes: the challenge of phenotyping. Annu Rev Genet 43:305–355CrossRefPubMedGoogle Scholar
  13. Casselbrant M, Mandel EM, Fall PA, Rockette HE, Kurs-Lasky M et al (1999) The heritability of otitis media: a twin and triplet study. JAMA 282:2125–2130CrossRefPubMedGoogle Scholar
  14. Collins FS, Finnell RH, Rossant J, Wurst W (2007) A new partner for the International Knockout Mouse Consortium. Cell 129:235CrossRefPubMedGoogle Scholar
  15. Daly KA, Brown WM, Segade F, Bowden DW, Keats BJ et al (2004) Chronic and recurrent otitis media: a genome scan for susceptibility loci. Am J Hum Genet 75:988–997CrossRefPubMedGoogle Scholar
  16. Danielian PS, Kim CFB, Caron AM, Vasile E, Bronson RT et al (2007) E2f4 is required for normal development of the airway epithelium. Dev Biol 305:564–576CrossRefPubMedGoogle Scholar
  17. Depreux FFS, Darrow K, Conner DA, Eavey RD, Liberman MC et al (2008) Eya4-deficient mice are a model for heritable otitis media. J Clin Invest 118:651–658PubMedGoogle Scholar
  18. Emonts M, Veenhoven RH, Wiertsema SP, Houwing-Duistermaat JJ, Walraven V et al (2007a) Genetic polymorphisms in immunoresponse genes TNFA, IL6, IL10, and TLR4 are associated with recurrent acute otitis media. Pediatrics 120:814–823CrossRefPubMedGoogle Scholar
  19. Emonts M, Wiertsema SP, Veenhoven RH, Houwing-Duistermaat JJ, Walraven V et al (2007b) The 4G/4G plasminogen activator inhibitor-1 genotype is associated with frequent recurrence of acute otitis media. Pediatrics 120:e317–e323CrossRefPubMedGoogle Scholar
  20. Eriksson P, Kallin B, van’t Hooft FM, Båvenholm P, Hamsten A (1995) Allele-specific increase in basal transcription of the plasminogen-activator inhibitor 1 gene is associated with myocardial infarction. Proc Natl Acad Sci USA 92:1851–1855CrossRefPubMedGoogle Scholar
  21. Eriksson PO, Li J, Ny T, Hellstrom S (2006) Spontaneous development of otitis media in plasminogen-deficient mice. Int J Med Microbiol 296:501–509CrossRefPubMedGoogle Scholar
  22. Fontemaggi G, Kela I, Amariglio N, Rechavi G, Krishnamurthy J et al (2002) Identification of direct p73 target genes combining DNA microarray and chromatin immunoprecipitation analyses. J Biol Chem 277:43359–43368CrossRefPubMedGoogle Scholar
  23. Gentile DA, Doyle WJ, Zeevi A, Howe-Adams J, Kapadia S et al (2003) Cytokine gene polymorphisms moderate illness severity in infants with respiratory syncytial virus infection. Hum Immunol 64:338–344CrossRefPubMedGoogle Scholar
  24. Giovannini M, Robanus-Maandag E, van der Valk M, Niwa-Kawakita M, Abramowski V et al (2000) Conditional biallelic Nf2 mutation in the mouse promotes manifestations of human neurofibromatosis type 2. Genes Dev 14:1617–1630PubMedGoogle Scholar
  25. Gondo Y (2008) Trends in large-scale mouse mutagenesis: from genetics to functional genomics. Nat Rev Genet 9:803–810CrossRefPubMedGoogle Scholar
  26. Han F, Yu H, Zhang J, Tian C, Schmidt C et al (2009) Otitis media in a mouse model for Down syndrome. Int J Exp Pathol 90:480–488CrossRefPubMedGoogle Scholar
  27. Hardisty RE, Erven A, Logan K, Morse S, Guionaud S et al (2003) The deaf mouse mutant Jeff (Jf) is a single gene model of otitis media. J Assoc Res Otolaryngol 4:130–138CrossRefPubMedGoogle Scholar
  28. Hardisty-Hughes RE, Tateossian H, Morse SA, Romero MR, Middleton A et al (2006) A mutation in the F-box gene, Fbxo11, causes otitis media in the Jeff mouse. Hum Mol Genet 15:3273–3279CrossRefPubMedGoogle Scholar
  29. Hardisty-Hughes RE, Parker A, Brown SDM (2010) A hearing and vestibular phenotyping pipeline to identify mouse mutants with hearing impairment. Nat Protocols 5:177–190CrossRefGoogle Scholar
  30. Heldermon CD, Hennig AK, Ohlemiller KK, Ogilvie JM, Herzog ED et al (2007) Development of sensory, motor and behavioral deficits in the murine model of Sanfilippo syndrome type B. PLoS ONE 2:e772CrossRefPubMedGoogle Scholar
  31. Hernandez M, Leichtle A, Pak K, Ebmeyer J, Euteneuer S et al (2008) Myeloid differentiation primary response gene 88 is required for the resolution of otitis media. J Infect Dis 198:1862–1869CrossRefPubMedGoogle Scholar
  32. Hirano T, Kodama S, Fujita K, Maeda K, Suzuki M (2007) Role of Toll-like receptor 4 in innate immune responses in a mouse model of acute otitis media. FEMS Immunol Med Microbiol 49:75–83CrossRefPubMedGoogle Scholar
  33. Humbert PO, Rogers C, Ganiatsas S, Landsberg RL, Trimarchi JM et al (2000) E2F4 is essential for normal erythrocyte maturation and neonatal viability. Mol Cell 6:281–291CrossRefPubMedGoogle Scholar
  34. Ibañez-Tallon I, Gorokhova S, Heintz N (2002) Loss of function of axonemal dynein Mdnah5 causes primary ciliary dyskinesia and hydrocephalus. Hum Mol Genet 15:715–721CrossRefGoogle Scholar
  35. International Human Genome Sequencing Consortium, Lander ES, Linton LM, Birren B, Nusbaum C et al (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921CrossRefPubMedGoogle Scholar
  36. Jin J, Cardozo T, Lovering RC, Elledge SJ, Pagano M et al (2004) Systematic analysis and nomenclature of mammalian F-box proteins. Genes Dev 18:2573–2580CrossRefPubMedGoogle Scholar
  37. Joki-Erkkila V-P, Puhakka H, Hurme M (2002) Cytokine gene polymorphism in recurrent acute otitis media. Arch Otolaryngol Head Neck Surg 128:17–20PubMedGoogle Scholar
  38. Jono H, Shuto T, Xu H, Kai H, Lim DJ et al (2002) Transforming growth factor-β-Smad signalling pathway cooperates with NF-κB to mediate nontypeable Haemophilus influenzae-induced MUC2 mucin transcription. J Biol Chem 227:45547–45557CrossRefGoogle Scholar
  39. Jono H, Xu H, Kai H, Lim DJ, Kim YS et al (2003) Transforming growth factor-β-Smad signalling pathway negative regulates nontypeable Haemophilus influenzae-induced MUC5AC mucin transcription via mitogen-activated protein kinase (MPAK) phosphatase-1-dependent inhibition of p38 MAPK. J Biol Chem 278:27811–27819CrossRefPubMedGoogle Scholar
  40. Justice MJ, Noveroske J, Weber J, Zheng B, Bradley A (1999) Mouse ENU mutagenesis. Hum Mol Genet 8:1955–1963CrossRefPubMedGoogle Scholar
  41. Kalm O, Johnson U, Prellner K, Ninn K (1991) HLA frequency in patients with recurrent acute otitis media. Arch Otolaryngol Head Neck Surg 117:1296–1299PubMedGoogle Scholar
  42. Kalm O, Johnson U, Prellner K (1994) HLA frequency in patients with chronic secretory otitis media. Int J Pediatr Otorhinolaryngol 30:151–157CrossRefPubMedGoogle Scholar
  43. Kilpi T, Herva E, Kaijalainen T, Syrjanen R, Takala AK (2001) Bacteriology of acute otitis media in a cohort of Finnish children followed for the first two years of life. Pediatr Infect Dis J 20:654–662CrossRefPubMedGoogle Scholar
  44. Kim KR, Chu H, Ko MH, Kwon SY, Kim C-H et al (2010) Auditory characteristics in the mucopolysaccaridosis II mice and therapeutic effect of enzyme replacement. In: 33rd MidWinter meeting of the association for research in otolaryngology, Anaheim, CA, 6–10 February 2010Google Scholar
  45. Kühn R, Wurst W (2009) Overview on mouse mutagenesis. Methods Mol Biol 530:1–12CrossRefPubMedGoogle Scholar
  46. Kurokawa M, Mitani K, Irie K, Matsuyama T, Takahashi T et al (1998) The oncoprotein Evi-1 represses TGF-β signalling by inhibiting Smad3. Nature 394:92–96CrossRefPubMedGoogle Scholar
  47. Kvaerner KJ, Tambs K, Harris JR, Magnus P (1997) Distribution and heritability of recurrent ear infections. Ann Otol Rhinol Laryngol 106:624–632PubMedGoogle Scholar
  48. Leichtle A, Hernandez M, Pak K, Yamasaki K, Cheng CF et al (2009) TLR4-mediated induction of TLR2 signaling is critical in the pathogenesis and resolution of otitis media. Innate Immun 15:205–215CrossRefPubMedGoogle Scholar
  49. Liao J, Kochilas L, Nowotschin S, Arnold JS, Aggarwal VS et al (2004) Full spectrum of malformations in velo-cardio-facial syndrome/DiGeorge syndrome mouse models by altering Tbx1 dosage. Hum Mol Genet 13:1577–1585CrossRefPubMedGoogle Scholar
  50. MacArthur CJ, Hefeneider SH, Kempton JB, Trune DR (2006) C3H/HeJ mouse model for spontaneous chronic otitis media. Laryngoscope 116:1071–1079CrossRefPubMedGoogle Scholar
  51. MacArthur CJ, Pillers D-AM, Pang J, Degagne JM, Kempton B et al (2008) Gram-negative pathogen Klebsiella oxytoca is associated with spontaneous chronic otitis media in Toll-like receptor 4-deficient C3H/HeJ mice. Acta Otolaryngol (Stockh) 128:132–138CrossRefGoogle Scholar
  52. Malley R, Henneke P, Morse SC, Cieslewicz MJ, Lipsitch M et al (2003) Recognition of pneumolysin by Toll-like receptor 4 confers resistance to pneumococcal infection. Proc Natl Acad Sci USA 100:1966–1971CrossRefPubMedGoogle Scholar
  53. Mao M, Thedens DR, Chang B, Harris BS, Zheng QY et al (2009) The podosomal-adaptor protein SH3PXD2B is essential for normal postnatal development. Mamm Genome 20:462–475CrossRefPubMedGoogle Scholar
  54. Massa HM, Cripps AW, Lehmann D (2009) Otitis media: viruses, bacteria, biofilms and vaccines. Med J Aust 191:S44–S49PubMedGoogle Scholar
  55. Megerian CA, Semaan MT, Aftab S, Kisley LB, Zheng QY et al (2008) A mouse model with postnatal endolymphatic hydrops and hearing loss. Hear Res 237:90–105CrossRefPubMedGoogle Scholar
  56. Mitani K (2004) Molecular mechanisms of leukemogenesis by AML1/EVI-1. Oncogene 23:4263–4269CrossRefPubMedGoogle Scholar
  57. Moll UM, Slade N (2004) p63 and p73: roles in development and tumor formation. Mol Cancer Res 2:371–386PubMedGoogle Scholar
  58. Mouse Genome Database (MGD). http://www.informatics.jax.org. Accessed May 2010
  59. Mouse Genome Sequencing Consortium (2002) Initial sequencing and comparative analysis of the mouse genome. Nature 420:520–562CrossRefGoogle Scholar
  60. Newnham JP, Evans SF, Michael CA, Stanley FJ, Landau LI (1993) Effects of frequent ultrasound during pregnancy: a randomised controlled trial. Lancet 342:887–891CrossRefPubMedGoogle Scholar
  61. Nolan PM, Peters J, Strivens M, Rogers D, Hagan J et al (2000) A systematic, genome-wide, phenotype-driven mutagenesis programme for gene function studies in the mouse. Nat Genet 25:440–443CrossRefPubMedGoogle Scholar
  62. Nuytinck L, De Meester E, Van Thielen M, Govaerts P (2006) Role of mannose-binding lectin (MBL2) genotyping in predicting the risk of recurrent otitis media (ROM). Adv Exp Med Biol 586:281–290CrossRefPubMedGoogle Scholar
  63. Okabe Y, Sano T, Nagata S (2009) Regulation of the innate immune response by threonine-phosphatase of eyes absent. Nature 460:520–524PubMedGoogle Scholar
  64. Parkinson N, Hardisty-Hughes RE, Tateossian H, Tsai H-T, Brooker D et al (2006) Mutation at the Evi1 locus in Junbo mice causes susceptibility to otitis media. PLoS Genet 2:e149CrossRefPubMedGoogle Scholar
  65. Patel A, Gentile DA, Koehrsen J, Skoner DP (2006a) Association between TGF-B1 genotype and the development of otitis media (OM) in young children during respiratory virus season. J Allergy Clin Immunol 117:S318CrossRefGoogle Scholar
  66. Patel JA, Nair S, Revai K, Grady J, Saeed K et al (2006b) Association of proinflammatory cytokine gene polymorphisms with susceptibility to otitis media. Pediatrics 118:2273–2279CrossRefPubMedGoogle Scholar
  67. Patel JA, Nguyen DT, Revai K, Chonmaitree T (2007) Role of respiratory syncytial virus in acute otitis media: implications for vaccine development. Vaccine 25:1683–1689CrossRefPubMedGoogle Scholar
  68. Pau H, Fuchs H, de Angelis MH, Steel KP (2005) Hush puppy: a new mouse mutant with pinna, ossicle, and inner ear defects. Laryngoscope 115:116–124CrossRefPubMedGoogle Scholar
  69. Pettigrew MM, Gent JF, Zhu Y, Triche EW, Belanger KD et al (2006) Association of surfactant protein A polymorphisms with otitis media in infants at risk for asthma. BMC Med Genet 7:68CrossRefPubMedGoogle Scholar
  70. Ploplis VA, Carmeliet P, Vazirzadeh S, Van Vlaenderen I, Moons L et al (1995) Effects of disruption of the plasminogen gene on thrombosis, growth, and health in mice. Circulation 92:2585–2593PubMedGoogle Scholar
  71. Prellner K, Hallberg T, Kalm O, Mansson B (1985) Recurrent otitis media: genetic immunoglobulin markers in children and their parents. Int J Pediatr Otorhinolaryngol 9:219–225CrossRefPubMedGoogle Scholar
  72. Rämet M, Löfgren J, Alho O-P, Hallman M (2001) Surfactant protein-A gene locus associated with recurrent otitis media. J Pediatr 138:266–268CrossRefPubMedGoogle Scholar
  73. Revai K, Patel JA, Grady JJ, Nair S, Matalon R et al (2009) Association between cytokine gene polymorphisms and risk for upper respiratory tract infection and acute otitis media. Clin Infect Dis 49:257–261CrossRefPubMedGoogle Scholar
  74. Rivkin AZ, Palacios SD, Pak K, Bennett T, Ryan AF (2005) The role of Fas-mediated apoptosis in otitis media: observations in the lpr/lpr mouse. Hear Res 207:110–116CrossRefPubMedGoogle Scholar
  75. Rovers M, Haggard M, Gannon M, Koeppen-Schomerus G, Plomin R (2002) Heritability of symptom domains in otitis media: a longitudinal study of 1, 373 twin pairs. Am J Epidemiol 155:958–964CrossRefPubMedGoogle Scholar
  76. Rye MS, Wiertsema SP, Scaman ESH, Oommen J, Sun W et al (2010) FBXO11, a regulator of the TGFβ pathway, is associated with severe otitis media in Western Australian children. Genes Immun (in press)Google Scholar
  77. Sale M, Marion M, Perlegas P, Segade F, Allred D et al (2008) Comprehensive evaluation of 16 functional candidate genes for chronic otitis media with effusion and/or recurrent otitis media (COME/ROM). In: Thirty-first annual midwinter research meeting of the association for research in otolaryngology, Phoenix, AZ, 16–21 February 2008Google Scholar
  78. Schachern PA, Cureoglu S, Tsuprun V, Paparella MM, Whitley CB (2007) Age-related functional and histopathological changes of the ear in the MPS I mouse. Int J Pediatr Otorhinolaryngol 71:197–203CrossRefPubMedGoogle Scholar
  79. Schmidt-Ullrich R, Aebischer T, Hülsken J, Birchmeier W, Klemm U et al (2001) Requirement of NF-kappaB/Rel for the development of hair follicles and other epidermal appendices. Development 128:3843–3853PubMedGoogle Scholar
  80. Schonberger J, Levy H, Grunig E, Sangwatanaroj S, Fatkin D et al (2000) Dilated cardiomyopathy and sensorineural hearing loss: a heritable syndrome that maps to 6q23–24. Circulation 101:1812–1818PubMedGoogle Scholar
  81. Segade F, Daly KA, Allred D, Hicks PJ, Cox M et al (2006) Association of the FBXO11 gene with chronic otitis media with effusion and recurrent otitis media: the Minnesota COME/ROM Family Study. Arch Otolaryngol Head Neck Surg 132:729–733CrossRefPubMedGoogle Scholar
  82. Siegel RM, Ka-Ming Chan F, Chun HJ, Lenardo MJ (2000) The multifaceted role of Fas signaling in immune cell homeostasis and autoimmunity. Nat Immunol 1:469–474CrossRefPubMedGoogle Scholar
  83. Straetemans M, Wiertsema SP, Sanders EA, Rijkers GT, Graamans K et al (2005) Immunological status in the aetiology of recurrent otitis media with effusion: serum immunoglobulin levels, functional mannose-binding lectin and Fc receptor polymorphisms for IgG. J Clin Immunol 25:78–86CrossRefPubMedGoogle Scholar
  84. Takeuchi O, Hoshino K, Kawai T, Sanjo H, Takada H et al (1999) Differential roles of TLR2 and TLR4 in recognition of gram-negative and gram-positive bacterial cell wall components. Immunity 11:443–451CrossRefPubMedGoogle Scholar
  85. Tateossian H, Hardisty-Hughes R, Morse S, Romero M, Hilton H et al (2009) Regulation of TGF-beta signalling by Fbxo11, the gene mutated in the Jeff otitis media mouse mutant. PathoGenetics 2:5CrossRefPubMedGoogle Scholar
  86. Teele DW, Klein JO, Rosner B (1989) Epidemiology of otitis media during the first seven years of life in children in greater Boston: a prospective, cohort study. J Infect Dis 160:83–94PubMedGoogle Scholar
  87. Tournas A, Mfuna L, Bossé Y, Filali-Mouhim A, Grenier J-P et al (2010) A pooling-based genome-wide association study implicates the p73 gene in chronic rhinosinusitis. J Otolaryngol Head Neck Surg 39:188–195PubMedGoogle Scholar
  88. Ubell ML, Khampang P, Kerschner JE (2010) Mucin gene polymorphisms in otitis media patients. Laryngoscope 120:132–138CrossRefPubMedGoogle Scholar
  89. Uhari M, Mäntysaari K, Niemelä M (1996) A meta-analytic review of the risk factors for acute otitis media. Clin Infect Dis 22:1079–1083PubMedGoogle Scholar
  90. Venter JC, Adams MD, Myers EW, Li PW, Mural RJ et al (2001) The sequence of the human genome. Science 291:1304–1351CrossRefPubMedGoogle Scholar
  91. Vogler C, Levy B, Galvin N, Sands MS, Birkenmeier EH et al (2001) A novel model of murine mucopolysaccharidosis type VII due to an intracisternal a particle element transposition into the beta-glucuronidase gene: clinical and pathologic findings. Pediatr Res 49:342–348CrossRefPubMedGoogle Scholar
  92. von Bernuth H, Picard C, Jin Z, Pankla R, Xiao H et al (2008) Pyogenic bacterial infections in humans with MyD88 deficiency. Science 321:691–696CrossRefGoogle Scholar
  93. Voronina VA, Takemaru K, Treuting P, Love D, Grubb BR et al (2009) Inactivation of Chibby affects function of motile airway cilia. J Cell Biol 185:225–233CrossRefPubMedGoogle Scholar
  94. Warren M, Wang W, Spiden S, Chen-Murchie D, Tannahill D et al (2007) A Sall4 mutant mouse model useful for studying the role of Sall4 in early embryonic development and organogenesis. Genesis 45:51–58CrossRefPubMedGoogle Scholar
  95. Watanabe-Fukunaga R, Brannan CI, Copeland NG, Jenkins NA, Nagata S (1992) Lymphoproliferation disorder in mice explained by defects in Fas antigen that mediates apoptosis. Nature 356:314–317CrossRefPubMedGoogle Scholar
  96. Wayne S, Robertson NG, DeClau F, Chen N, Verhoeven K et al (2001) Mutations in the transcriptional activator EYA4 cause late-onset deafness at the DFNA10 locus. Hum Mol Genet 10:195–200CrossRefPubMedGoogle Scholar
  97. Wiertsema SP, Herpers BL, Veenhoven RH, Salimans MMM, Ruven HJT et al (2006a) Functional polymorphisms in the mannan-binding lectin 2 gene: effect on MBL levels and otitis media. J Allergy Clin Immunol 117:1344–1350CrossRefPubMedGoogle Scholar
  98. Wiertsema SP, Khoo S-K, Baynam G, Veenhoven RH, Laing IA et al (2006b) Association of CD14 promoter polymorphism with otitis media and pneumococcal vaccine responses. Clin Vaccine Immunol 13:892–897CrossRefPubMedGoogle Scholar
  99. Yang A, Walker N, Bronson R, Kaghad M, Oosterwegel M et al (2000) p73-deficient mice have neurological, pheromonal and inflammatory defects but lack spontaneous tumours. Nature 404:99–103CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Marie S. Rye
    • 1
  • Mahmood F. Bhutta
    • 2
    • 3
  • Michael T. Cheeseman
    • 3
  • David Burgner
    • 4
  • Jenefer M. Blackwell
    • 1
  • Steve D. M. Brown
    • 3
  • Sarra E. Jamieson
    • 1
  1. 1.Telethon Institute for Child Health Research, Centre for Child Health ResearchThe University of Western AustraliaSubiacoAustralia
  2. 2.Nuffield Department of SurgeryJohn Radcliffe HospitalOxfordUK
  3. 3.MRC Mammalian Genetics UnitHarwellUK
  4. 4.Murdoch Children’s Research InstituteThe Royal Children’s HospitalParkvilleAustralia

Personalised recommendations