Advertisement

Mammalian Genome

, Volume 21, Issue 7–8, pp 398–408 | Cite as

COL9A2 and COL9A3 mutations in canine autosomal recessive oculoskeletal dysplasia

  • Orly Goldstein
  • Richard Guyon
  • Anna Kukekova
  • Tatyana N. Kuznetsova
  • Susan E. Pearce-Kelling
  • Jennifer Johnson
  • Gustavo D. Aguirre
  • Gregory M. Acland
Article

Abstract

Oculoskeletal dysplasia segregates as an autosomal recessive trait in the Labrador retriever and Samoyed canine breeds, in which the causative loci have been termed drd1 and drd2, respectively. Affected dogs exhibit short-limbed dwarfism and severe ocular defects. The disease phenotype resembles human hereditary arthro-ophthalmopathies such as Stickler and Marshall syndromes, although these disorders are usually dominant. Linkage studies mapped drd1 to canine chromosome 24 and drd2 to canine chromosome 15. Positional candidate gene analysis then led to the identification of a 1-base insertional mutation in exon 1 of COL9A3 that cosegregates with drd1 and a 1,267-bp deletion mutation in the 5′ end of COL9A2 that cosegregates with drd2. Both mutations affect the COL3 domain of the respective gene. Northern analysis showed that RNA expression of the respective genes was reduced in affected retinas. These models offer potential for studies such as protein-protein interactions between different members of the collagen gene family, regulation and expression of these genes in retina and cartilage, and even opportunities for gene therapy.

Keywords

Labrador Retriever COL3 Domain COL9A3 Mutation Multiple Epiphyseal Dysplasia Stickler Syndrome 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors thank Julie Jordan and the staff of the RDS facility for excellent technical assistance. Blood samples with pedigrees and clinical reports were provided by Ms. Sue Bailey and Ms. Nancy Scholz for selected Labrador retriever dogs. Leah Seman, Beth A. Tallentire, and Glen Adams, breeders and owners of samoyed dogs, were immensely cooperative and helpful and are gratefully acknowledged. This work was supported by NIH grant EY006855, The Foundation Fighting Blindness, and the Morris Animal Foundation.

Disclosures

G. M. Acland and G. D. Aguirre are co-owners of Optigen, LLC (Ithaca, NY, USA) which has licensed the technology for DNA testing of dogs with OSD from Cornell University.

Supplementary material

335_2010_9276_MOESM1_ESM.doc (210 kb)
Supplementary material 1 (DOC 209 kb)

References

  1. Acland GM, Aguirre GD (1995) 2nd International DogMap meeting, Cambridge, UK Google Scholar
  2. Ayme S, Preus M (1984) The Marshall and Stickler syndromes: objective rejection of lumping. J Med Genet 21:34–38CrossRefPubMedGoogle Scholar
  3. Bonnemann CG, Cox GF, Shapiro F, Wu JJ, Feener CA et al (1999) A mutation in the alpha 3 chain of type IX collagen causes autosomal dominant multiple epiphyseal dyplasia with mild myopathy. Proc Natl Acad Sci USA 97:1212–1217CrossRefGoogle Scholar
  4. Carrig CB, MacMillan A, Brundage S, Pool RR, Morgan JP (1997) Retinal dysplasia associated with skeletal abnormalities in Labrador retrievers. J Am Vet Med Assoc 170:49–57Google Scholar
  5. Czarny-Ratajczak M, Lohiniva J, Rogala P, Kozlowski K, Perälä M et al (2001) A mutation in COL9A1 causes multiple epiphyseal dysplasia: further evidence for locus heterogeneity. Am J Hum Genet 69:969–980CrossRefPubMedGoogle Scholar
  6. Du F (2000) Molecular and genetic studies of Oculoskeletal Dysplasia (OSD) in dogs. Ph.D. thesis, Cornell University, Ithaca, NYGoogle Scholar
  7. Du F, Acland GM, Ray J (2000) Cloning and expression of type II collagen mRNA: evaluation as a candidate for canine oculoskeletal dysplasia. Gene 255:307–316CrossRefPubMedGoogle Scholar
  8. Fiedler J, Stove J, Heber F, Brenner RE (2002) Clinical phenotype and molecular diagnosis of multiple epiphyseal dysplasia with relative hip sparing during childhood (EDM2). Am J Med Genet 112:144–153CrossRefPubMedGoogle Scholar
  9. Goldstein O, Zangerl B, Pearce-Kelling S, Sidjanin DJ, Kijas JW et al (2006) Linkage disequilibrium mapping in the domestic dog breeds narrows the progressive rod-cone degeneration interval and identifies ancestral disease-transmitting chromosome. Genomics 88:541–550CrossRefPubMedGoogle Scholar
  10. Holden P, Canty EG, Mortier GR, Zabel B, Spranger J et al (1999) Identification of novel pro-alpha2(IX) collagen gene mutations in two families with distinctive oligo-epiphyseal form of multiple epiphyseal dyplasia. Am J Hum Genet 65:31–38CrossRefPubMedGoogle Scholar
  11. Kukekova AV, Nelson J, Kuchtey RW, Lowe JK, Johnson JL et al (2006) Linkage mapping of canine rod cone dysplasia type 2 (rcd2) to CFA7, the canine orthologue of human 1q32. Invest Ophthamol Vis Sci 47:1210–1215CrossRefGoogle Scholar
  12. Lathrop GM, Lalouel JM, Julier C, Ott J (1984) Strategies for multilocus linkage analysis in humans. Proc Natl Acad Sci USA 81:3443–3446CrossRefPubMedGoogle Scholar
  13. Lohiniva J, Paassilta P, Seppanen U, Vierimaa O, Kivirikko S et al (2000) Splicing mutations in the COL3 domain of collagen IX causes multiple epiphyseal dysplasia. Am J Med Genet 90:216–222CrossRefPubMedGoogle Scholar
  14. Matise TC, Perlin M, Chakravarti A (1994) Automated construction of genetic linkage maps using an expert system (MultiMap): a human genome linkage map. Nat Genet 6:384–390CrossRefPubMedGoogle Scholar
  15. Maumenee IH, Traboulsi EI (1985) The ocular findings in Kniest dysplasia. Am J Ophthalmol 100:155–160PubMedGoogle Scholar
  16. Meyers VN, Jezyk PF, Aguirre GD, Patterson DF (1983) Short-limbed dwarfism and ocular defects in the samoyed dog. J Am Vet Med Assoc 183:975–979PubMedGoogle Scholar
  17. Nakashima M, Ikegawa S, Ohashi H, Kimizuka M, Nishimura G (2005a) Double-layered patella in multiple epiphyseal dysplasia is not exclusive to DTDST mutation. Am J Med Genet 133A:106–107CrossRefPubMedGoogle Scholar
  18. Nakashima M, Kitoh H, Maeda K, Haga N, Kosaki R et al (2005b) Novel COL9A3 mutation in a family with multiple epiphyseal dysplasia. Am J Med Genet 132A:181–184CrossRefPubMedGoogle Scholar
  19. Paasilta P, Lohiniva J, Annunem S, Bonaventure J, Le-Merrer M et al (1999) COL9A3: a third locus for multiple epiphyseal dysplasia. Am J Hum Genet 64:1036–1044CrossRefGoogle Scholar
  20. Pellegrini B, Acland GM, Ray J (2002) Cloning and characterization of opticin cDNA: evaluation as a candidate for canine oculoskeletal dysplasia. Gene 282:121–131CrossRefPubMedGoogle Scholar
  21. Snead MP, Yates JR (1999) Clinical and molecular genetics of Stickler syndrome. J Med Genet 36:353–359PubMedGoogle Scholar
  22. Spranger JW, Brill PW, Poznanski AK (2002) Multiple epiphyseal dysplasia. In: Spranger JW, Brill PW, Poznanski AK (eds) Bone dysplasia: an atlas of genetic disorders of skeletal development. Oxford University Press, New York, pp 141–146Google Scholar
  23. Stickler GB, Belau PG, Farrell FJ, Jones JD, Pugh DG et al (1965) Hereditary progressive arthro-ophthalmopathy. Mayo Clin Proc 40:433–455PubMedGoogle Scholar
  24. Takahashi M, Matsui Y, Goto T, Nishimura G, Ikegawa S et al (2006) Intrafamilial phenotypic diversity in multiple epiphyseal dysplasia associated with the COL9A2 mutation (EDM2). Clin Rheumatol 25:591–595CrossRefPubMedGoogle Scholar
  25. Van Camp G, Snoeckx RL, Hilgert N, Ende J, Fukuoka H et al (2006) A new autosomal recessive form of Stickler syndrome is caused by a mutation in the COL9A1 gene. Am J Hum Genet 79:449–457CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Orly Goldstein
    • 1
  • Richard Guyon
    • 2
  • Anna Kukekova
    • 1
  • Tatyana N. Kuznetsova
    • 4
  • Susan E. Pearce-Kelling
    • 1
    • 3
  • Jennifer Johnson
    • 1
  • Gustavo D. Aguirre
    • 4
  • Gregory M. Acland
    • 1
  1. 1.Baker Institute for Animal Health, College of Veterinary MedicineCornell UniversityIthacaUSA
  2. 2.Faculté de MédecineInstitut de Génétique et DéveloppementRennesFrance
  3. 3.Optigen, LLCIthacaUSA
  4. 4.School of Veterinary MedicineUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations