Mammalian Genome

, Volume 21, Issue 1–2, pp 1–12 | Cite as

Computational approaches for microRNA studies: a review

  • Li Li
  • Jianzhen XuEmail author
  • Deyin Yang
  • Xiaorong Tan
  • Hongfei Wang


MicroRNAs (miRNAs) are one class of tiny, endogenous RNAs that can regulate messenger RNA (mRNA) expression by targeting homologous sequences in mRNAs. Their aberrant expressions have been observed in many cancers and several miRNAs have been convincingly shown to play important roles in carcinogenesis. Since the discovery of this small regulator, computational methods have been indispensable tools in miRNA gene finding and functional studies. In this review we first briefly outline the biological findings of miRNA genes, such as genomic feature, biogenesis, gene structure, and functional mechanism. We then discuss in detail the three main aspects of miRNA computational studies: miRNA gene finding, miRNA target prediction, and regulation of miRNA genes. Finally, we provide perspectives on some emerging issues, including combinatorial regulation by miRNAs and functional binding sites beyond the 3′-untranslated region (3′UTR) of target mRNAs. Available online resources for miRNA computational studies are also provided.


miRNA Target miRNA Gene Target Prediction miRNA Binding Site Viral miRNAs 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.





Primary miRNAs


Untranslated region




miRNA-induced silencing complexes




Support vector machine


Hidden Markov model


High-throughput sequencing of RNAs isolated by crosslinking immunoprecipitation


Transcription factors

Pol II or Pol III

RNA polymerase II or III


Transcription start site



We apologize for the failure to cite many of the important and relevant papers in this field due to space limitations. We thank Dr. Baowei Peng and Ms. Jian Fan for critical reading of the manuscript. This work was partially supported by the National Natural Science Foundation of China (Grant No. 60601010), the Science Foundation of the education department of Henan province (Grant No. 2006210002), and the Award for Outstanding Young Teacher of Tongji University (No.TJYQ08014).


  1. Addo-Quaye C, Miller W, Axtell MJ (2009) CleaveLand: a pipeline for using degradome data to find cleaved small RNA targets. Bioinformatics 25:130–131CrossRefPubMedGoogle Scholar
  2. Amaral PP, Dinger ME, Mercer TR, Mattick JS (2008) The eukaryotic genome as an RNA machine. Science 319:1787–1789CrossRefPubMedGoogle Scholar
  3. Baek D, Villen J, Shin C, Camargo FD, Gygi SP et al (2008) The impact of microRNAs on protein output. Nature 455:64–71CrossRefPubMedGoogle Scholar
  4. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297CrossRefPubMedGoogle Scholar
  5. Baskerville S, Bartel DP (2005) Microarray profiling of microRNAs reveals frequent coexpression with neighboring miRNAs and host genes. RNA 11:241–247CrossRefPubMedGoogle Scholar
  6. Bentwich I, Avniel A, Karov Y, Aharonov R, Gilad S et al (2005) Identification of hundreds of conserved and nonconserved human microRNAs. Nat Genet 37:766–770CrossRefPubMedGoogle Scholar
  7. Berezikov E, Chung WJ, Willis J, Cuppen E, Lai EC (2007) Mammalian mirtron genes. Mol Cell 28:328–336CrossRefPubMedGoogle Scholar
  8. Borchert GM, Lanier W, Davidson BL (2006) RNA polymerase III transcribes human microRNAs. Nat Struct Mol Biol 13:1097–1101CrossRefPubMedGoogle Scholar
  9. Cai X, Hagedorn CH, Cullen BR (2004) Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. RNA 10:1957–1966CrossRefPubMedGoogle Scholar
  10. Chang YM, Juan HF, Lee TY, Chang YY, Yeh YM et al (2008) Prediction of human miRNAs using tissue-selective motifs in 3′ UTRs. Proc Natl Acad Sci USA 105:17061–17066CrossRefPubMedGoogle Scholar
  11. Chi SW, Zang JB, Mele A, Darnell RB (2009) Argonaute HITS-CLIP decodes microRNA-mRNA interaction maps. Nature 460:479–486PubMedGoogle Scholar
  12. Cui C, Griffiths A, Li G, Silva LM, Kramer MF et al (2006) Prediction and identification of herpes simplex virus 1-encoded microRNAs. J Virol 80:5499–5508CrossRefPubMedGoogle Scholar
  13. Dews M, Homayouni A, Yu D, Murphy D, Sevignani C et al (2006) Augmentation of tumor angiogenesis by a Myc-activated microRNA cluster. Nat Genet 38:1060–1065CrossRefPubMedGoogle Scholar
  14. Easow G, Teleman AA, Cohen SM (2007) Isolation of microRNA targets by miRNP immunopurification. RNA 13:1198–1204CrossRefPubMedGoogle Scholar
  15. Enright AJ, John B, Gaul U, Tuschl T, Sander C et al (2003) MicroRNA targets in Drosophila. Genome Biol 5:R1CrossRefPubMedGoogle Scholar
  16. Filipowicz W, Bhattacharyya SN, Sonenberg N (2008) Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet 9:102–114CrossRefPubMedGoogle Scholar
  17. Fontana L, Pelosi E, Greco P, Racanicchi S, Testa U et al (2007) MicroRNAs 17–5p-20a–106a control monocytopoiesis through AML1 targeting and M-CSF receptor upregulation. Nat Cell Biol 9:775–787CrossRefPubMedGoogle Scholar
  18. Forman JJ, Legesse-Miller A, Coller HA (2008) A search for conserved sequences in coding regions reveals that the let-7 microRNA targets Dicer within its coding sequence. Proc Natl Acad Sci USA 105:14879–14884CrossRefPubMedGoogle Scholar
  19. Friedlander MR, Chen W, Adamidi C, Maaskola J, Einspanier R et al (2008) Discovering microRNAs from deep sequencing data using miRDeep. Nat Biotechnol 26:407–415CrossRefPubMedGoogle Scholar
  20. German MA, Pillay M, Jeong DH, Hetawal A, Luo S et al (2008) Global identification of microRNA-target RNA pairs by parallel analysis of RNA ends. Nat Biotechnol 26:941–946CrossRefPubMedGoogle Scholar
  21. Giraldez AJ, Cinalli RM, Glasner ME, Enright AJ, Thomson JM et al (2005) MicroRNAs regulate brain morphogenesis in zebrafish. Science 308:833–838CrossRefPubMedGoogle Scholar
  22. Giraldez AJ, Mishima Y, Rihel J, Grocock RJ, Van Dongen S et al (2006) Zebrafish MiR-430 promotes deadenylation and clearance of maternal mRNAs. Science 312:75–79CrossRefPubMedGoogle Scholar
  23. Grun D, Wang YL, Langenberger D, Gunsalus KC, Rajewsky N (2005) microRNA target predictions across seven Drosophila species and comparison to mammalian targets. PLoS Comput Biol 1:e13CrossRefPubMedGoogle Scholar
  24. Grundhoff A, Sullivan CS, Ganem D (2006) A combined computational and microarray-based approach identifies novel microRNAs encoded by human gamma-herpesviruses. RNA 12:733–750CrossRefPubMedGoogle Scholar
  25. Hackenberg M, Sturm M, Langenberger D, Falcon-Perez JM, Aransay AM (2009) miRanalyzer: a microRNA detection and analysis tool for next-generation sequencing experiments. Nucleic Acids Res 37:W68–W76CrossRefPubMedGoogle Scholar
  26. Hammell M, Long D, Zhang L, Lee A, Carmack CS et al (2008) mirWIP: microRNA target prediction based on microRNA-containing ribonucleoprotein-enriched transcripts. Nat Methods 5:813–819CrossRefPubMedGoogle Scholar
  27. Helvik SA, Snove O Jr, Saetrom P (2007) Reliable prediction of Drosha processing sites improves microRNA gene prediction. Bioinformatics 23:142–149CrossRefPubMedGoogle Scholar
  28. Hertel J, Stadler PF (2006) Hairpins in a haystack: recognizing microRNA precursors in comparative genomics data. Bioinformatics 22:e197–e202CrossRefPubMedGoogle Scholar
  29. Hsu PW, Lin LZ, Hsu SD, Hsu JB, Huang HD (2007) ViTa: prediction of host microRNAs targets on viruses. Nucleic Acids Res 35:D381–D385CrossRefPubMedGoogle Scholar
  30. Huang JC, Babak T, Corson TW, Chua G, Khan S et al (2007a) Using expression profiling data to identify human microRNA targets. Nat Methods 4:1045–1049CrossRefPubMedGoogle Scholar
  31. Huang TH, Fan B, Rothschild MF, Hu ZL, Li K et al (2007b) MiRFinder: an improved approach and software implementation for genome-wide fast microRNA precursor scans. BMC Bioinformatics 8:341CrossRefPubMedGoogle Scholar
  32. Hwang HW, Wentzel EA, Mendell JT (2007) A hexanucleotide element directs microRNA nuclear import. Science 315:97–100CrossRefPubMedGoogle Scholar
  33. Jiang P, Wu H, Wang W, Ma W, Sun X et al (2007) MiPred: classification of real and pseudo microRNA precursors using random forest prediction model with combined features. Nucleic Acids Res 35:W339–W344CrossRefPubMedGoogle Scholar
  34. Kertesz M, Iovino N, Unnerstall U, Gaul U, Segal E (2007) The role of site accessibility in microRNA target recognition. Nat Genet 39:1278–1284CrossRefPubMedGoogle Scholar
  35. Kim DH, Saetrom P, Snove O Jr, Rossi JJ (2008) MicroRNA-directed transcriptional gene silencing in mammalian cells. Proc Natl Acad Sci USA 105:16230–16235CrossRefPubMedGoogle Scholar
  36. Kim SK, Nam JW, Rhee JK, Lee WJ, Zhang BT (2006) miTarget: microRNA target gene prediction using a support vector machine. BMC Bioinformatics 7:411CrossRefPubMedGoogle Scholar
  37. Kim VN (2005) MicroRNA biogenesis: coordinated cropping and dicing. Nat Rev Mol Cell Biol 6:376–385CrossRefPubMedGoogle Scholar
  38. Kim YK, Yu J, Han TS, Park SY, Namkoong B et al (2009) Functional links between clustered microRNAs: suppression of cell-cycle inhibitors by microRNA clusters in gastric cancer. Nucleic Acids Res 37:1672–1681CrossRefPubMedGoogle Scholar
  39. Kiriakidou M, Nelson PT, Kouranov A, Fitziev P, Bouyioukos C et al (2004) A combined computational-experimental approach predicts human microRNA targets. Genes Dev 18:1165–1178CrossRefPubMedGoogle Scholar
  40. Krek A, Grun D, Poy MN, Wolf R, Rosenberg L et al (2005) Combinatorial microRNA target predictions. Nat Genet 37:495–500CrossRefPubMedGoogle Scholar
  41. Lall S, Grun D, Krek A, Chen K, Wang YL et al (2006) A genome-wide map of conserved microRNA targets in C. elegans. Curr Biol 16:460–471CrossRefPubMedGoogle Scholar
  42. Landgraf P, Rusu M, Sheridan R, Sewer A, Iovino N et al (2007) A mammalian microRNA expression atlas based on small RNA library sequencing. Cell 129:1401–1414CrossRefPubMedGoogle Scholar
  43. Lee J, Li Z, Brower-Sinning R, John B (2007) Regulatory circuit of human microRNA biogenesis. PLoS Comput Biol 3:e67CrossRefPubMedGoogle Scholar
  44. Lee RC, Ambros V (2001) An extensive class of small RNAs in Caenorhabditis elegans. Science 294:862–864CrossRefPubMedGoogle Scholar
  45. Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75:843–854CrossRefPubMedGoogle Scholar
  46. Lee Y, Jeon K, Lee JT, Kim S, Kim VN (2002) MicroRNA maturation: stepwise processing and subcellular localization. EMBO J 21:4663–4670CrossRefPubMedGoogle Scholar
  47. Lee Y, Kim M, Han J, Yeom KH, Lee S et al (2004) MicroRNA genes are transcribed by RNA polymerase II. EMBO J 23:4051–4060CrossRefPubMedGoogle Scholar
  48. Lewis BP, Shih IH, Jones-Rhoades MW, Bartel DP, Burge CB (2003) Prediction of mammalian microRNA targets. Cell 115:787–798CrossRefPubMedGoogle Scholar
  49. Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120:15–20CrossRefPubMedGoogle Scholar
  50. Li SC, Shiau CK, Lin WC (2008) Vir-Mir db: prediction of viral microRNA candidate hairpins. Nucleic Acids Res 36:D184–D189CrossRefPubMedGoogle Scholar
  51. Lim LP, Lau NC, Weinstein EG, Abdelhakim A, Yekta S et al (2003) The microRNAs of Caenorhabditis elegans. Genes Dev 17:991–1008CrossRefPubMedGoogle Scholar
  52. Lim LP, Lau NC, Garrett-Engele P, Grimson A, Schelter JM et al (2005) Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 433:769–773CrossRefPubMedGoogle Scholar
  53. Lindow M, Gorodkin J (2007) Principles and limitations of computational microRNA gene and target finding. DNA Cell Biol 26:339–351CrossRefPubMedGoogle Scholar
  54. Linsen SE, de Wit E, Janssens G, Heater S, Chapman L et al (2009) Limitations and possibilities of small RNA digital gene expression profiling. Nat Methods 6:474–476CrossRefPubMedGoogle Scholar
  55. Long D, Lee R, Williams P, Chan CY, Ambros V et al (2007) Potent effect of target structure on microRNA function. Nat Struct Mol Biol 14:287–294CrossRefPubMedGoogle Scholar
  56. Lytle JR, Yario TA, Steitz JA (2007) Target mRNAs are repressed as efficiently by microRNA-binding sites in the 5′ UTR as in the 3′ UTR. Proc Natl Acad Sci USA 104:9667–9672CrossRefPubMedGoogle Scholar
  57. Marson A, Levine SS, Cole MF, Frampton GM, Brambrink T et al (2008) Connecting microRNA genes to the core transcriptional regulatory circuitry of embryonic stem cells. Cell 134:521–533CrossRefPubMedGoogle Scholar
  58. Martinez NJ, Ow MC, Barrasa MI, Hammell M, Sequerra R et al (2008) A C. elegans genome-scale microRNA network contains composite feedback motifs with high flux capacity. Genes Dev 22:2535–2549CrossRefPubMedGoogle Scholar
  59. Maziere P, Enright AJ (2007) Prediction of microRNA targets. Drug Discov Today 12:452–458CrossRefPubMedGoogle Scholar
  60. Megraw M, Sethupathy P, Corda B, Hatzigeorgiou AG (2007) miRGen: a database for the study of animal microRNA genomic organization and function. Nucleic Acids Res 35:D149–D155CrossRefPubMedGoogle Scholar
  61. Milo R, Shen-Orr S, Itzkovitz S, Kashtan N, Chklovskii D et al (2002) Network motifs: simple building blocks of complex networks. Science 298:824–827CrossRefPubMedGoogle Scholar
  62. Miranda KC, Huynh T, Tay Y, Ang YS, Tam WL et al (2006) A pattern-based method for the identification of microRNA binding sites and their corresponding heteroduplexes. Cell 126:1203–1217CrossRefPubMedGoogle Scholar
  63. Nam JW, Kim J, Kim SK, Zhang BT (2006) ProMiR II: a web server for the probabilistic prediction of clustered, nonclustered, conserved and nonconserved microRNAs. Nucleic Acids Res 34:W455–W458CrossRefPubMedGoogle Scholar
  64. Ng KL, Mishra SK (2007) De novo SVM classification of precursor microRNAs from genomic pseudo hairpins using global and intrinsic folding measures. Bioinformatics 23:1321–1330CrossRefPubMedGoogle Scholar
  65. Okamura K, Hagen JW, Duan H, Tyler DM, Lai EC (2007) The mirtron pathway generates microRNA-class regulatory RNAs in Drosophila. Cell 130:89–100CrossRefPubMedGoogle Scholar
  66. Okamura K, Phillips MD, Tyler DM, Duan H, Chou YT et al (2008) The regulatory activity of microRNA* species has substantial influence on microRNA and 3′ UTR evolution. Nat Struct Mol Biol 15:354–363CrossRefPubMedGoogle Scholar
  67. Olson AJ, Brennecke J, Aravin AA, Hannon GJ, Sachidanandam R (2008) Analysis of large-scale sequencing of small RNAs. Pac Symp Biocomput 126-136Google Scholar
  68. Ozsolak F, Poling LL, Wang Z, Liu H, Liu XS et al (2008) Chromatin structure analyses identify miRNA promoters. Genes Dev 22:3172–3183CrossRefPubMedGoogle Scholar
  69. Papadopoulos GL, Reczko M, Simossis VA, Sethupathy P, Hatzigeorgiou AG (2009) The database of experimentally supported targets: a functional update of TarBase. Nucleic Acids Res 37:D155–D158CrossRefPubMedGoogle Scholar
  70. Pfeffer S, Zavolan M, Grasser FA, Chien M, Russo JJ et al (2004) Identification of virus-encoded microRNAs. Science 304:734–736CrossRefPubMedGoogle Scholar
  71. Pfeffer S, Sewer A, Lagos-Quintana M, Sheridan R, Sander C et al (2005) Identification of microRNAs of the herpesvirus family. Nat Methods 2:269–276CrossRefPubMedGoogle Scholar
  72. Place RF, Li LC, Pookot D, Noonan EJ, Dahiya R (2008) MicroRNA-373 induces expression of genes with complementary promoter sequences. Proc Natl Acad Sci USA 105:1608–1613CrossRefPubMedGoogle Scholar
  73. Rehmsmeier M, Steffen P, Hochsmann M, Giegerich R (2004) Fast and effective prediction of microRNA/target duplexes. RNA 10:1507–1517CrossRefPubMedGoogle Scholar
  74. Ruby JG, Jan CH, Bartel DP (2007) Intronic microRNA precursors that bypass Drosha processing. Nature 448:83–86CrossRefPubMedGoogle Scholar
  75. Rusinov V, Baev V, Minkov IN, Tabler M (2005) MicroInspector: a web tool for detection of miRNA binding sites in an RNA sequence. Nucleic Acids Res 33:W696–W700CrossRefPubMedGoogle Scholar
  76. Saetrom O, Snove O Jr, Saetrom P (2005) Weighted sequence motifs as an improved seeding step in microRNA target prediction algorithms. RNA 11:995–1003CrossRefPubMedGoogle Scholar
  77. Saini HK, Griffiths-Jones S, Enright AJ (2007) Genomic analysis of human microRNA transcripts. Proc Natl Acad Sci USA 104:17719–17724CrossRefPubMedGoogle Scholar
  78. Selbach M, Schwanhausser B, Thierfelder N, Fang Z, Khanin R et al (2008) Widespread changes in protein synthesis induced by microRNAs. Nature 455:58–63CrossRefPubMedGoogle Scholar
  79. Sethupathy P, Megraw M, Hatzigeorgiou AG (2006) A guide through present computational approaches for the identification of mammalian microRNA targets. Nat Methods 3:881–886CrossRefPubMedGoogle Scholar
  80. Sewer A, Paul N, Landgraf P, Aravin A, Pfeffer S et al (2005) Identification of clustered microRNAs using an ab initio prediction method. BMC Bioinformatics 6:267CrossRefPubMedGoogle Scholar
  81. Sullivan CS, Ganem D (2005) MicroRNAs and viral infection. Mol Cell 20:3–7CrossRefPubMedGoogle Scholar
  82. Tay Y, Zhang J, Thomson AM, Lim B, Rigoutsos I (2008) MicroRNAs to Nanog, Oct4 and Sox2 coding regions modulate embryonic stem cell differentiation. Nature 455:1124–1128CrossRefPubMedGoogle Scholar
  83. Thadani R, Tammi MT (2006) MicroTar: predicting microRNA targets from RNA duplexes. BMC Bioinformatics 7 Suppl 5:S20CrossRefPubMedGoogle Scholar
  84. van Dongen S, Abreu-Goodger C, Enright AJ (2008) Detecting microRNA binding and siRNA off-target effects from expression data. Nat Methods 5:1023–1025CrossRefPubMedGoogle Scholar
  85. Wang X, Zhang J, Li F, Gu J, He T et al (2005) MicroRNA identification based on sequence and structure alignment. Bioinformatics 21:3610–3614CrossRefPubMedGoogle Scholar
  86. Xu J, Wong C (2008) A computational screen for mouse signaling pathways targeted by microRNA clusters. RNA 14:1276–1283CrossRefPubMedGoogle Scholar
  87. Xue C, Li F, He T, Liu GP, Li Y et al (2005) Classification of real and pseudo microRNA precursors using local structure-sequence features and support vector machine. BMC Bioinformatics 6:310CrossRefPubMedGoogle Scholar
  88. Yousef M, Nebozhyn M, Shatkay H, Kanterakis S, Showe LC et al (2006) Combining multi-species genomic data for microRNA identification using a Naive Bayes classifier. Bioinformatics 22:1325–1334CrossRefPubMedGoogle Scholar
  89. Yousef M, Jung S, Kossenkov AV, Showe LC, Showe MK (2007) Naive Bayes for microRNA target predictions–machine learning for microRNA targets. Bioinformatics 23:2987–2992CrossRefPubMedGoogle Scholar
  90. Yu X, Lin J, Zack DJ, Mendell JT, Qian J (2008) Analysis of regulatory network topology reveals functionally distinct classes of microRNAs. Nucleic Acids Res 36:6494–6503CrossRefPubMedGoogle Scholar
  91. Yuan X, Liu C, Yang P, He S, Liao Q et al (2009) Clustered microRNAs’ coordination in regulating protein-protein interaction network. BMC Syst Biol 3:65CrossRefPubMedGoogle Scholar
  92. Zhang L, Ding L, Cheung TH, Dong MQ, Chen J et al (2007) Systematic identification of C. elegans miRISC proteins, miRNAs, and mRNA targets by their interactions with GW182 proteins AIN-1 and AIN-2. Mol Cell 28:598–613CrossRefPubMedGoogle Scholar
  93. Zhao Y, Samal E, Srivastava D (2005) Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis. Nature 436:214–220CrossRefPubMedGoogle Scholar
  94. Zhou X, Ruan J, Wang G, Zhang W (2007) Characterization and identification of microRNA core promoters in four model species. PLoS Comput Biol 3:e37CrossRefPubMedGoogle Scholar
  95. Ziegelbauer JM, Sullivan CS, Ganem D (2009) Tandem array-based expression screens identify host mRNA targets of virus-encoded microRNAs. Nat Genet 41:130–134CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Li Li
    • 1
  • Jianzhen Xu
    • 2
    Email author
  • Deyin Yang
    • 3
  • Xiaorong Tan
    • 2
  • Hongfei Wang
    • 4
  1. 1.Department of Medical Genetics, School of MedicineTongji UniversityShanghaiPeople’s Republic of China
  2. 2.College of BioengineeringHenan University of TechnologyZhengzhouPeople’s Republic of China
  3. 3.Medical College of Soochow UniversitySuzhouPeople’s Republic of China
  4. 4.Kaifeng UniversityKaifengPeople’s Republic of China

Personalised recommendations