Mammalian Genome

, Volume 21, Issue 1–2, pp 13–27 | Cite as

Microphthalmia, parkinsonism, and enhanced nociception in Pitx3 416insG mice

  • Michael Rosemann
  • Alesia Ivashkevich
  • Jack Favor
  • Claudia Dalke
  • Sabine M. Hölter
  • Lore Becker
  • Ildikó Rácz
  • Ines Bolle
  • Martina Klempt
  • Birgit Rathkolb
  • Svetoslav Kalaydjiev
  • Thure Adler
  • Antonio Aguilar
  • Wolfgang Hans
  • Marion Horsch
  • Jan Rozman
  • Julia Calzada-Wack
  • Sandra Kunder
  • Beatrix Naton
  • Valerie Gailus-Durner
  • Helmut Fuchs
  • Holger Schulz
  • Johannes Beckers
  • Dirk H. Busch
  • J. Peter H. Burbach
  • Marten P. Smidt
  • Leticia Quintanilla-Martinez
  • Irene Esposito
  • Thomas Klopstock
  • Martin Klingenspor
  • Markus Ollert
  • Eckhard Wolf
  • Wolfgang Wurst
  • Andreas Zimmer
  • Martin Hrabé de Angelis
  • Michael Atkinson
  • Ulrich Heinzmann
  • Jochen Graw
Article

Abstract

A new spontaneous mouse mutant was characterized by closed eyelids at weaning and without apparent eyes (provisional gene name, eyeless; provisional gene symbol, eyl). The mutation follows a recessive pattern of inheritance and was mapped to the region of chromosome 19 containing Pitx3. Genetic complementation tests using Pitx3 ak/+ mice confirmed eyl as a new allele of Pitx3 (Pitx3 eyl ). Sequencing of the Pitx3 gene in eyl mutants identified an inserted G after cDNA position 416 (416insG; exon 4). The shifted open reading frame is predicted to result in a hybrid protein still containing the Pitx3 homeobox, but followed by 121 new amino acids. The novel Pitx3 eyl/eyl mutants expressed ophthalmological and brain defects similar to Pitx3 ak/ak mice: microphthalmia or anophthalmia and loss of dopamine neurons of the substantia nigra. In addition, we observed in the homozygous eyeless mutants increased extramedullary hematopoiesis in the spleen, frequently liver steatosis, and reduced body weight. There were also several behavioral changes in the homozygous mutants, including reduced forelimb grip strength and increased nociception. In addition to these alterations in both sexes, we observed in female Pitx3 eyl/eyl mice increased anxiety-related behavior, reduced locomotor activity, reduced object exploration, and increased social contacts; however, we observed decreased anxiety-related behavior and increased arousal in males. Most of these defects identified in the new Pitx3 mutation are observed in Parkinson patients, making the Pitx3 eyl mutant a valuable new model. It is the first mouse mutant carrying a point mutation within the coding region of Pitx3.

Notes

Acknowledgments

This work was supported at least in part by the German National Genome Research Network (NGFN; grants 01GS0850, 01GS0851, 01GS0852, 01GS0854, 01GS0869, 01GS0853, 01GS08156, 01GR0430, 01GR0434, 01GR0438, 01KW9948, and R0313435B), the Deutsche Forschungsgemeinschaft (FOR926), and the European Union (FP6, EUMODIC, LSHG-CT-2006-037188). The expert technical assistance of Miriam Backs, Erika Bürkle, Christine Führmann, Anita Hellemons, Elfi Holupirek, Regina Kneuttinger, Maria Kugler, Astrid Markert, Jacqueline Müller, Eleonore Samson, Bahar Sanli-Bonazzi, Sandra Schädler, Florian Schleicher, Daniela Schmid, Ann-Elisabeth Schwarz, Reinhard Seeliger, Monika Stadler, Susanne Wittich, and Claudia Zeller is gratefully acknowledged.

Supplementary material

335_2009_9235_MOESM1_ESM.pdf (424 kb)
Supplementary material 1 (PDF 425 kb)

References

  1. Alessandrini F, Jakob T, Wolf A, Wolf E, Balling R et al (2001) ENU mouse mutagenesis: generation of mouse mutants with aberrant plasma IgE levels. Int Arch Allergy Immunol 124:25–28CrossRefPubMedGoogle Scholar
  2. Ardayfio P, Moon J, Leung KK, Youn-Hwang D, Kim KS (2008) Impaired learning and memory in Pitx3 deficient aphakia mice: a genetic model for striatum-dependent cognitive symptoms in Parkinson’s disease. Neurobiol Dis 31:406–412CrossRefPubMedGoogle Scholar
  3. Baba Y, Kuroiwa A, Uitti RJ, Wszolek ZK, Yamada T (2005) Alterations of T-lymphocyte populations in Parkinson disease. Parkinsonism Relat Disord 11:493–498CrossRefPubMedGoogle Scholar
  4. Barrantes IB, Montero-Pedrazuela A, Guadaño-Ferraz A, Obregon MJ, Martinez de Mena R et al (2006) Generation and characterization of dickkopf3 mutant mice. Mol Cell Biol 26:2317–2326CrossRefGoogle Scholar
  5. Beeler JA, Cao ZF, Kheirbek MA, Zhuang X (2009) Loss of cocaine locomotor response in Pitx3-deficient mice lacking a nigrostriatal pathway. Neuropsychopharmacology 34:1149–1161CrossRefPubMedGoogle Scholar
  6. Bergman O, Håkansson A, Westberg L, Nordenström K, Belin AC (2010) PITX3 polymorphism is associated with early onset Parkinson’s disease. Neurobiol Aging 31:114–117CrossRefPubMedGoogle Scholar
  7. Berry V, Yang Z, Addison PKF, Francis PJ, Ionides A et al (2004) Recurrent 17 bp supplication in PITX3 is primarily associated with posterior polar cataract (CPP4). J Med Genet 41:e109CrossRefPubMedGoogle Scholar
  8. Bi S, Chen J, Behles RR, Hyun J, Kopin AS et al (2007) Differential body weight and feeding responses to high-fat diets in rats and mice lacking cholecystokinin 1 receptors. Am J Physiol Regul Integr Comp Physiol 293:R55–R63PubMedGoogle Scholar
  9. Bidinost C, Matsumoto M, Chung D, Salem N, Zhang K et al (2006) Heterozygous and homozygous mutations in PITX3 in a large Lebanese family with posterior polar cataracts and neurodevelopmental abnormalities. Invest Ophthalmol Vis Sci 47:1274–1280CrossRefPubMedGoogle Scholar
  10. Bowes C, Li T, Frankel WN, Danciger M, Coffin JM et al (1993) Localization of a retroviral element within the rd gene coding for the beta subunit of cGMP phosphodiesterase. Proc Natl Acad Sci USA 90:2955–2959CrossRefPubMedGoogle Scholar
  11. Brefel-Courbon C, Payoux P, Thalamas C, Ory F, Quelven I et al (2005) Effect of Levadopa on pain threshold in Parkinson’s disease: a clinical and positron emission tomography study. Movement Dis 20:1557–1563CrossRefPubMedGoogle Scholar
  12. Chudler EH, Dong WK (1995) The role of the basal ganglia in nociception and pain. Pain 60:3–38CrossRefPubMedGoogle Scholar
  13. Corteling R, Trifilieff A (2004) Gender comparison in a murine model of allergen-driven airway inflammation and the response to budesonide treatment. BMC Pharmacol 4:4CrossRefPubMedGoogle Scholar
  14. Coulon V, L’Honoré A, Ouimette JF, Dumontier É, van den Munckhof P et al (2007) A muscle-specific promoter directs Pitxc3 gene expression in skeletal muscle cells. J Biol Chem 282:33192–33200CrossRefPubMedGoogle Scholar
  15. Drorbaugh JE, Fenn WO (1955) A barometric method for measuring ventilation in newborn infants. Pediatrics 16:81–87PubMedGoogle Scholar
  16. Fahn S (2003) Description of Parkinson’s disease as a clinical syndrome. Ann N Y Acad Sci 991:1–14PubMedCrossRefGoogle Scholar
  17. Favor J, Grimes P, Neuhäuser-Klaus A, Pretsch W, Stambolian D (1997) The mouse Cat4 locus maps to chromosome 8 and mutants express lens-corneal adhesion. Mamm Genome 8:403–406CrossRefPubMedGoogle Scholar
  18. Fleming SM, Fernagut PO, Chesselet MF (2005) Genetic mouse models of Parkinsonism: strengths and limitations. NeuroRx 2:495–503CrossRefPubMedGoogle Scholar
  19. Fuchs J, Mueller JC, Lichtner P, Schulte C, Munz M et al (2009) The transcription factor PITX3 is associated with sporadic Parkinson’s disease. Neurobiol Aging 30:731–738CrossRefPubMedGoogle Scholar
  20. Furukawa T, Kozak CA, Cepko CL (1997) rax, a novel paired-type homeobox gene, shows expression in the anterior neural fold and developing retina. Proc Natl Acad Sci U S A 94:3088–3093CrossRefPubMedGoogle Scholar
  21. Gage PJ, Suh H, Camper SA (1999) The bicoid-related Pitx family in development. Mamm Genome 10:197–200CrossRefPubMedGoogle Scholar
  22. Gailus-Durner V, Fuchs H, Becker L, Bolle I, Brielmeier M et al (2005) Introducing the German Mouse Clinic: open access platform for standardized phenotyping. Nat Methods 2:403–404CrossRefPubMedGoogle Scholar
  23. Glerup S, Kloverpris S, Laursen LS, Dagnaes-Hansen F, Thiel S et al (2007) Cell surface detachment of pregnancy-associated plasma protein-A requires the formation of intermolecular proteinase-inhibitor disulfide bonds and glycosaminoglycan covalently bound to the inhibitor. J Biol Chem 282:1769–1778CrossRefPubMedGoogle Scholar
  24. Graw J, Jung M, Löster J, Klopp N, Soewarto D et al (1999) Mutation in the βA3/A1-crystallin encoding gene Cryba1 causes a dominant cataract in the mouse. Genomics 62:67–73CrossRefPubMedGoogle Scholar
  25. Hargreaves K, Dubner R, Brown F, Flores C, Joris J (1988) A new and sensitive method for measuring thermal nociception in cutaneous hyperalgesia. Pain 32:77–88CrossRefPubMedGoogle Scholar
  26. Haubenberger D, Reinthaler E, Mueller JC, Pirker W, Katzenschlager R et al (2009) Association of transcription factor polymorphisms PITX3 and EN1 with Parkinson’s disease. Neurobiol Aging doi: 10.1016/j.neurobiolaging.2009.02.015
  27. Hofmann HA, De Vry J, Siegling A, Spreyer P, Denzer D (2003) Pharmacological sensitivity and gene expression analysis of the tibial nerve injury model of neuropathic pain. Eur J Pharmacol 470:17–25CrossRefPubMedGoogle Scholar
  28. Horsch M, Schädler S, Gailus-Durner V, Fuchs H, Meyer H et al (2008) Systematic gene expression profiling of mouse model series reveals coexpressed genes. Proteomics 8:1248–1256CrossRefPubMedGoogle Scholar
  29. Jacobs FM, van Erp S, van der Linden AJ, von Oerthel L, Burbach JP et al (2009) Pitx3 potentiates Nurr1 in dopamine neuron terminal differentiation through release of SMRT-mediated repression. Development 136:531–540CrossRefPubMedGoogle Scholar
  30. Kas MJH, van der Linden AJA, Oppelaar H, von Oerthel L, Ramakers GMJ et al (2008) Phenotypic segregation of aphakia and Pitx3-null mutants reveals that Pitx3 deficiency increases consolidation of specific movement components. Behav Brain Res 186:208–214CrossRefPubMedGoogle Scholar
  31. Kim HJ, Paek SH, Kim JY, Lee JY, Lim YH et al (2008) Chronic subthalamic deep brain stimulation improves pain in Parkinson disease. J Neurol 255:1889–1894CrossRefPubMedGoogle Scholar
  32. Klempt M, Rathkolb B, Aigner B, Wolf E (2006) Clinical chemical screen. In: Hrabé de Angelis M, Chambon P, Brown S (eds) Standards of Mouse Model Phenotyping. Wiley-VCH, Weinheim, pp 87–107CrossRefGoogle Scholar
  33. Lau P, Fitzsimmons RL, Raichur S, Wang SC, Lechtken A et al (2008) The orphan nuclear receptor, RORalpha, regulates gene expression that controls lipid metabolism: staggerer (SG/SG) mice are resistant to diet-induced obesity. J Biol Chem 283:18411–18421CrossRefPubMedGoogle Scholar
  34. L’Honoré A, Coulon V, Marcil A, Lebel M, Lafrance-Vanasse J et al (2007) Sequential expression and redundancy of Pitx2 and Pitx3 genes during muscle development. Dev Biol 307:421–433CrossRefPubMedGoogle Scholar
  35. MacKenzie PI, Messer M (1976) Studies on the origin and excretion of serum alpha-amylase in the mouse. Comp Biochem Physiol B 54:103–106CrossRefPubMedGoogle Scholar
  36. Moss DW (1982) Alkaline phosphatase isoenzymes. Clin Chem 28:2007–2016PubMedGoogle Scholar
  37. Moss DW (1987) Diagnostic aspects of alkaline phosphatase and its isoenzymes. Clin Biochem 20:225–230CrossRefPubMedGoogle Scholar
  38. Nunes I, Tovmasian LT, Silva RM, Burke RE, Goff SP (2003) Pitx3 is required for development of substantia nigra dopaminergic neurons. Proc Natl Acad Sci U S A 100:4245–4250CrossRefPubMedGoogle Scholar
  39. Ohl F, Sillaber I, Binder E, Keck ME, Holsboer F (2001) Differential analysis of behavior and diazepam-induced alterations in C57BL/6 N and BALB/c mice using the modified hole board test. J Psychiatr Res 35:147–154CrossRefPubMedGoogle Scholar
  40. Pfaffl MW, Horgan GW, Dempfle L (2002) Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res 30:e36CrossRefPubMedGoogle Scholar
  41. Pittler SJ, Baehr W (1991) Identification of a nonsense mutation in the rod photoreceptor cGMP phosphodiesterase beta-subunit gene of the rd mouse. Proc Natl Acad Sci U S A 88:8322–8326CrossRefPubMedGoogle Scholar
  42. Pogorelov VM, Rodriguiz RM, Insco ML, Caron MG, Wetsel WC (2005) Novelty seeking and stereotypic activation behavior in mice with disruption of the Dat1 gene. Neuropsychopharmacology 30:1818–1831CrossRefPubMedGoogle Scholar
  43. Racz I, Schütz B, Abo-Salem OM, Zimmer A (2005) Visceral, inflammatory and neuropathic pain in glycine receptor alpha 3-deficient mice. Neuroreport 16:2025–2028CrossRefPubMedGoogle Scholar
  44. Racz I, Nadal X, Alferink J, Baños JE, Rehnelt J et al (2008) Crucial role of CB2 cannabinoid receptor in the regulation of central immune responses during neuropathic pain. J Neurosci 25:12152-12135Google Scholar
  45. Rieger DK, Reichenberger E, McLean W, Sidow A, Olsen BR (2001) A double-deletion mutation in the Pitx3 gene causes arrested lens development in aphakia mice. Genomics 72:61–72CrossRefPubMedGoogle Scholar
  46. Rogers DC, Fisher EMC, Brown SDM, Peters J, Hunter AJ et al (1997) Behavioral and functional analysis of mouse phenotype: SHIRPA, a proposed protocol for comprehensive phenotype assessment. Mamm Genome 8:711–713CrossRefPubMedGoogle Scholar
  47. Rosemann M, Lintrop M, Favor J, Atkinson MJ (2002) Bone tumorigenesis induced by alpha-particle radiation: mapping of genetic loci influencing predisposition in mice. Radiat Res 157:426–434CrossRefPubMedGoogle Scholar
  48. Sakazume S, Sorokina E, Iwamoto Y, Semina EV (2007) Functional analysis of human mutations in homeodomain transcription factor PITX3. BMC Mol Biol 8:84CrossRefPubMedGoogle Scholar
  49. Schibler U, Hagenbüchle O, Young RA, Tosi M, Wellauer PK (1982) Tissue specific expression of mouse α-amylase genes. Adv Exp Med Biol 158:381–385PubMedGoogle Scholar
  50. Schneider I, Tirsch WS, Faus-Kessler T, Becker L, Kling E et al (2006) Systematic, standardized and comprehensive neurological phenotyping of inbred mice strains in the German Mouse Clinic. J Neurosci Methods 157:82–90CrossRefPubMedGoogle Scholar
  51. Semina EV, Ferrell RE, Mintz-Hittner HA, Bitoun P, Alward WLM et al (1998) A novel homeobox gene PITX3 is mutated in families with autosomal-dominant cataracts and ASMD. Nat Genet 19:167–170CrossRefPubMedGoogle Scholar
  52. Semina E, Murray JC, Reiter R, Hrstka RF, Graw J (2000) Deletion in the promotor region and altered expression of Pitx3 homeobox gene in aphakia mice. Hum Mol Genet 9:1575–1585CrossRefPubMedGoogle Scholar
  53. Seymour BWP, Friebertshauser KE, Peake JL, Pinkerton KE, Coffmann RL et al (2002) Gender differences in the allergic response of mice neonatally exposed to environmental tobacco smoke. Dev Immunol 9:47–54CrossRefPubMedGoogle Scholar
  54. Sidman RL, Green MC (1965) Retinal degeneration in the mouse: location of the rd locus in linkage group XVII. J Hered 56:23–29PubMedGoogle Scholar
  55. Silva AL, Romão L (2009) The mammalian nonsense-mediated mRNA decay pathway: to decay or not to decay! Which players make the decision? FEBS Lett 583:499–505CrossRefPubMedGoogle Scholar
  56. Singh B, Wilson JH, Vasavada HH, Guo Z, Allore HG et al (2007) Motor deficits and altered striatal gene expression in aphakia (ak) mice. Brain Res 1185:283–292CrossRefPubMedGoogle Scholar
  57. Smidt MP, Smits SM, Burbach JPH (2003) Molecular mechanisms underlying midbrain dopamine neuron development and function. Eur J Pharmacol 480:75–88CrossRefPubMedGoogle Scholar
  58. Smidt MP, Smits SM, Bouwmeester H, Hamers FPT, van der Linden AJA et al (2004) Early developmental failure of substantia nigra dopamine neurons in mice lacking the homeodomain gene Pitx3. Development 131:1145–1155CrossRefPubMedGoogle Scholar
  59. Van den Munckhof P, Luk KC, Ste-Marie L, Montgomery J, Blanchet PJ et al (2003) Pitx3 is required for motor activity and for survival of a subset of midbrain dopaminergic neurons. Development 130:2535–2542CrossRefPubMedGoogle Scholar
  60. Van den Munckhof P, Gilbert F, Chamberland M, Lévesque D, Drouin J (2006) Striatal neuroadaptation and rescue of locomotor deficit by L-dopa in aphakia mice, a model of Parkinson’s disease. J Neurochem 96:160–170CrossRefPubMedGoogle Scholar
  61. VanderWende C, Margolin S (1956) Analgesic tests based upon experimentally induced acute abdominal pain in rats. Fed Proc 15:494Google Scholar
  62. Vauti F, Goller T, Beine R, Becker L, Klopstock T et al (2007) The mouse Trm1-like gene is expressed in neural tissues and plays a role in motor coordination and exploratory behaviour. Gene 389:174–185CrossRefPubMedGoogle Scholar
  63. Vives J, Sasajala P, Chang KH, Zhao S, Li M (2008) A mouse model for tracking nigrostriatal dopamine neuron axon growth. Genesis 46:125–131CrossRefPubMedGoogle Scholar
  64. Zhao S, Maxwell S, Jimenez-Beristain A, Vives J, Kuehner E et al (2004) Generation of embryonic stem cells and transgenic mice expressing green fluorescence protein in midbrain dopaminergic neurons. Eur J Neurosci 19:1133–1140CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Michael Rosemann
    • 1
  • Alesia Ivashkevich
    • 2
  • Jack Favor
    • 3
  • Claudia Dalke
    • 4
    • 1
  • Sabine M. Hölter
    • 4
  • Lore Becker
    • 7
  • Ildikó Rácz
    • 9
  • Ines Bolle
    • 6
    • 17
  • Martina Klempt
    • 8
  • Birgit Rathkolb
    • 8
  • Svetoslav Kalaydjiev
    • 10
    • 16
  • Thure Adler
    • 10
  • Antonio Aguilar
    • 13
  • Wolfgang Hans
    • 5
  • Marion Horsch
    • 5
  • Jan Rozman
    • 5
    • 12
  • Julia Calzada-Wack
    • 2
  • Sandra Kunder
    • 2
  • Beatrix Naton
    • 5
  • Valerie Gailus-Durner
    • 5
  • Helmut Fuchs
    • 5
  • Holger Schulz
    • 6
  • Johannes Beckers
    • 5
    • 14
  • Dirk H. Busch
    • 10
  • J. Peter H. Burbach
    • 11
  • Marten P. Smidt
    • 11
  • Leticia Quintanilla-Martinez
    • 2
    • 17
  • Irene Esposito
    • 2
    • 15
  • Thomas Klopstock
    • 7
  • Martin Klingenspor
    • 12
  • Markus Ollert
    • 13
  • Eckhard Wolf
    • 8
  • Wolfgang Wurst
    • 5
  • Andreas Zimmer
    • 9
  • Martin Hrabé de Angelis
    • 5
    • 15
  • Michael Atkinson
    • 1
  • Ulrich Heinzmann
    • 2
  • Jochen Graw
    • 4
  1. 1.Institute of Radiation BiologyHelmholtz Zentrum München, German Research Center for Environmental HealthNeuherbergGermany
  2. 2.Institute of PathologyHelmholtz Zentrum München, German Research Center for Environmental HealthNeuherbergGermany
  3. 3.Institute of Human GeneticsHelmholtz Zentrum München, German Research Center for Environmental HealthNeuherbergGermany
  4. 4.Institute of Developmental GeneticsHelmholtz Zentrum München, German Research Center for Environmental HealthNeuherbergGermany
  5. 5.Institute of Experimental GeneticsHelmholtz Zentrum München, German Research Center for Environmental HealthNeuherbergGermany
  6. 6.Institute of Lung Biology and DiseaseHelmholtz Zentrum München, German Research Center for Environmental HealthNeuherbergGermany
  7. 7.Department of Neurology, Friedrich-Baur-InstitutLudwig-Maximilians-Universität MünchenMunichGermany
  8. 8.Molecular Animal Breeding and BiotechnologyLudwig-Maximilians-Universität MünchenMunichGermany
  9. 9.Institute of Molecular PsychiatryUniversity of BonnBonnGermany
  10. 10.Institute for Medical Microbiology, Immunology and HygieneTechnische Universität MünchenMunichGermany
  11. 11.Department of Neuroscience and Pharmacology, Rudolf Magnus Institute of NeuroscienceUniversity Medical CenterUtrechtThe Netherlands
  12. 12.Nutrition and Food Research CenterTechnische Universität MünchenFreisingGermany
  13. 13.Clinical Research Division of Molecular and Clinical Allergotoxicology, Department of Dermatology and AllergyTechnische Universität MünchenMunichGermany
  14. 14.Experimental GeneticsTechnical University MunichFreising-WeihenstephanGermany
  15. 15.Institute of PathologyTechnische Universität MünchenMunichGermany
  16. 16.Miltenyi Biotec Ltd.BisleyUK
  17. 17.Institute of PathologyUniversity Hospital TübingenTubingenGermany

Personalised recommendations