Mammalian Genome

, 20:604 | Cite as

Interindividual variation in epigenomic phenomena in humans

  • Hugh J. French
  • Rosalind Attenborough
  • Kristine Hardy
  • M. Frances Shannon
  • Rohan B. H. Williams
Article

Abstract

Our knowledge of regulatory mechanisms of gene expression and other chromosomal processes related to DNA methylation and chromatin state is continuing to grow at a rapid pace. Understanding how these epigenomic phenomena vary between individuals will have an impact on understanding their broader role in determining variation in gene expression and biochemical, physiological, and behavioural phenotypes. In this review we survey recent progress in this area, focusing on data available from humans. We highlight the role of obligatory (sequence-dependent) epigenomic variation as an important mechanism for generating interindividual variation that could impact our understanding of the mechanistic basis of complex trait architecture.

Notes

Acknowledgments

HJF was funded by a postgraduate scholarship from the JCSMR, RA was funded by a JCSMR Summer Scholarship in 2009, RBHW was funded in part by an NHMRC Peter Doherty Fellowship, and KH was funded by an NHMRC Project Grant. We thank the two anonymous reviewers for their helpful feedback.

References

  1. An W (2007) Histone acetylation and methylation: combinatorial players for transcriptional regulation. Subcell Biochem 41:351–369PubMedGoogle Scholar
  2. Ball MP, Li JB, Gao Y, Lee JH, LeProust EM et al (2009) Targeted and genome-scale strategies reveal gene-body methylation signatures in human cells. Nat Biotechnol 27(4):361–368CrossRefPubMedGoogle Scholar
  3. Batada NN, Urrutia AO, Hurst LD (2007) Chromatin remodelling is a major source of coexpression of linked genes in yeast. Trends Genet 23(10):480–484CrossRefPubMedGoogle Scholar
  4. Bernstein BE, Meissner A, Lander ES (2007) The mammalian epigenome. Cell 128(4):669–681CrossRefPubMedGoogle Scholar
  5. Bjornsson HT, Sigurdsson MI, Fallin MD, Irizarry RA, Aspelund T et al (2008) Intra-individual change over time in DNA methylation with familial clustering. JAMA 299(24):2877–2883CrossRefPubMedGoogle Scholar
  6. Bock C, Lengauer T (2008) Computational epigenetics. Bioinformatics 24(1):1–10CrossRefPubMedGoogle Scholar
  7. Bock C, Walter J, Lengauer T (2008) Inter-individual variation of DNA methylation and its implications for large-scale epigenome mapping. Nucleic Acids Res 36(10):e55CrossRefPubMedGoogle Scholar
  8. Bönisch C, Nieratschker SM, Orfanos NK, Hake SB (2008) Chromatin proteomics and epigenetic regulatory circuits. Expert Rev Proteomics 5(1):105–119CrossRefPubMedGoogle Scholar
  9. Brena RM, Huang TH, Plass C (2006) Toward a human epigenome. Nat Genet 38(12):1359–1360CrossRefPubMedGoogle Scholar
  10. Butcher LM, Beck S (2008) Future impact of integrated high-throughput methylome analyses on human health and disease. J Genet Genomics 35(7):391–401CrossRefPubMedGoogle Scholar
  11. Cedar H, Bergman Y (2009) Linking DNA methylation and histone modification: patterns and paradigms. Nat Rev Genet 10(5):295–304CrossRefPubMedGoogle Scholar
  12. Choi JK, Kim YJ (2008) Epigenetic regulation and the variability of gene expression. Nat Genet 40(2):141–147CrossRefPubMedGoogle Scholar
  13. Church GM (2005) The personal genome project. Mol Syst Biol 1:2005.0030PubMedGoogle Scholar
  14. Coller HA, Kruglyak L (2008) Genetics. It’s the sequence, stupid! Science 322(5900):380CrossRefPubMedGoogle Scholar
  15. de la Casa-Esperón E, Sapienza C (2006) Epigenetic variation: amount, causes, and consequences. In: Jorde L, Little P, Dunn M, Subramaniam S (eds) Encyclopedia of genetics, genomics, proteomics and bioinformatics. Wiley, New York, Article no. g103227Google Scholar
  16. DeAngelis JT, Farrington WJ, Tollefsbol TO (2008) An overview of epigenetic assays. Mol Biotechnol 38(2):179–183CrossRefPubMedGoogle Scholar
  17. Deng J, Shoemaker R, Xie B, Gore A, LeProust EM et al (2009) Targeted bisulfite sequencing reveals changes in DNA methylation associated with nuclear reprogramming. Nat Biotechnol 27(4):353–360CrossRefPubMedGoogle Scholar
  18. Eckhardt F, Lewin J, Cortese R, Rakyan VK, Attwood J et al (2006) DNA methylation profiling of human chromosomes 6, 20 and 22. Nat Genet 38(12):1378–1385CrossRefPubMedGoogle Scholar
  19. El-Maarri O, Kareta MS, Mikeska T, Becker T, Diaz-Lacava A et al (2009) A systematic search for DNA methyltransferase polymorphisms reveals a rare DNMT3L variant associated with subtelomeric hypomethylation. Hum Mol Genet 18(10):1755–1768CrossRefPubMedGoogle Scholar
  20. Esteller M (2007) Cancer epigenomics: DNA methylomes and histone-modification maps. Nat Rev Genet 8(4):286–298CrossRefPubMedGoogle Scholar
  21. Fan JY, Gordon F, Luger K, Hansen JC, Tremethick DJ (2002) The essential histone variant H2A.Z regulates the equilibrium between different chromatin conformational states. Nat Struct Biol 9(3):172–176PubMedGoogle Scholar
  22. Field Y, Kaplan N, Fondufe-Mittendorf Y, Moore IK, Sharon E et al (2008) Distinct modes of regulation by chromatin encoded through nucleosome positioning signals. PLoS Comput Biol 4(11):e1000216CrossRefPubMedGoogle Scholar
  23. Flanagan JM, Popendikyte V, Pozdniakovaite N, Sobolev M, Assadzadeh A et al (2006) Intra- and interindividual epigenetic variation in human germ cells. Am J Hum Genet 79(1):67–84CrossRefPubMedGoogle Scholar
  24. Fraga MF, Ballestar E, Paz MF, Ropero S, Setien F et al (2005) Epigenetic differences arise during the lifetime of monozygotic twins. Proc Natl Acad Sci USA 102(30):10604–10609CrossRefPubMedGoogle Scholar
  25. Gibson G (2008) The environmental contribution to gene expression profiles. Nat Rev Genet 9(8):575–581CrossRefPubMedGoogle Scholar
  26. Gilchrist DA, Fargo DC, Adelman K (2009) Using ChIP-chip and ChIP-seq to study the regulation of gene expression: Genome-wide localization studies reveal widespread regulation of transcription elongation. Methods 48(4):398–408CrossRefPubMedGoogle Scholar
  27. Göring HH, Curran JE, Johnson MP, Dyer TD, Charlesworth J et al (2007) Discovery of expression QTLs using large-scale transcriptional profiling in human lymphocytes. Nat Genet 39(10):1208–1216CrossRefPubMedGoogle Scholar
  28. Haig D (2007) Weismann Rules! OK? Epigenetics and the Lamarckian temptation. Biol Philos 22(3):415–428CrossRefGoogle Scholar
  29. Heijmans BT, Kremer D, Tobi EW, Boomsma DI, Slagboom PE (2007) Heritable rather than age-related environmental and stochastic factors dominate variation in DNA methylation of the human IGF2/H19 locus. Hum Mol Genet 16(5):547–554CrossRefPubMedGoogle Scholar
  30. Heijmans BT, Tobi EW, Stein AD, Putter H, Blauw GJ et al (2008) Persistent epigenetic differences associated with prenatal exposure to famine in humans. Proc Natl Acad Sci USA 105(44):17046–17049CrossRefPubMedGoogle Scholar
  31. Hörz W, Altenburger W (1981) Sequence specific cleavage of DNA by micrococcal nuclease. Nucleic Acids Res 9(12):2643–2658CrossRefPubMedGoogle Scholar
  32. Huang H, Maertens AM, Hyland EM, Dai J, Norris A et al (2009) HistoneHits: a database for histone mutations and their phenotypes. Genome Res 19(4):674–681CrossRefPubMedGoogle Scholar
  33. International HapMap Consortium, Frazer KA, Ballinger DG, Cox DR, Hinds DA et al (2007) A second generation human haplotype map of over 3.1 million SNPs. Nature 449(7164):851–861CrossRefPubMedGoogle Scholar
  34. Jensen ON (2006) Interpreting the protein language using proteomics. Nat Rev Mol Cell Biol 7(6):391–403CrossRefPubMedGoogle Scholar
  35. Johannes F, Colot V, Jansen RC (2008) Epigenome dynamics: a quantitative genetics perspective. Nat Rev Genet 9(11):883–890CrossRefPubMedGoogle Scholar
  36. Johnson DS, Li W, Gordon DB, Bhattacharjee A, Curry B et al (2008) Systematic evaluation of variability in ChIP-chip experiments using predefined DNA targets. Genome Res 18(3):393–403CrossRefPubMedGoogle Scholar
  37. Kadota M, Yang HH, Hu N, Wang C, Hu Y et al (2007) Allele-specific chromatin immunoprecipitation studies show genetic influence on chromatin state in human genome. PLoS Genet 3(5):e81CrossRefPubMedGoogle Scholar
  38. Kaminsky ZA, Tang T, Wang SC, Ptak C, Oh GH et al (2009) DNA methylation profiles in monozygotic and dizygotic twins. Nat Genet 41(2):240–245CrossRefPubMedGoogle Scholar
  39. Kaput J, Cotton RG, Hardman L, Watson M, Al Aqeel AI et al (2009) Planning the human variome project: the Spain report. Hum Mutat 30(4):496–510CrossRefPubMedGoogle Scholar
  40. Kerkel K, Spadola A, Yuan E, Kosek J, Jiang L et al (2008) Genomic surveys by methylation-sensitive SNP analysis identify sequence-dependent allele-specific DNA methylation. Nat Genet 40(7):904–908CrossRefPubMedGoogle Scholar
  41. Kuan PF, Chun H, Keleş S (2008) CMARRT: a tool for the analysis of ChIP-chip data from tiling arrays by incorporating the correlation structure. Pac Symp Biocomput 51:5–526Google Scholar
  42. Lee SI, Pe’er D, Dudley AM, Church GM, Koller D (2006) Identifying regulatory mechanisms using individual variation reveals key role for chromatin modification. Proc Natl Acad Sci USA 103(38):14062–14067CrossRefPubMedGoogle Scholar
  43. Lo HS, Wang Z, Hu Y, Yang HH, Gere S et al (2003) Allelic variation in gene expression is common in the human genome. Genome Res 13(8):1855–1862PubMedGoogle Scholar
  44. Malik HS, Henikoff S (2003) Phylogenomics of the nucleosome. Nat Struct Mol Biol 10(11):882–891CrossRefGoogle Scholar
  45. McClurg P, Janes J, Wu C, Delano DL, Walker JR et al (2007) Genomewide association analysis in diverse inbred mice: power and population structure. Genetics 176(1):675–683CrossRefPubMedGoogle Scholar
  46. Morgan DK, Whitelaw E (2008) The case for transgenerational epigenetic inheritance in humans. Mamm Genome 19(6):394–397CrossRefPubMedGoogle Scholar
  47. Morgan HD, Sutherland HG, Martin DI, Whitelaw E (1999) Epigenetic inheritance at the agouti locus in the mouse. Nat Genet 23(3):314–318CrossRefPubMedGoogle Scholar
  48. Moser D, Ekawardhani S, Kumsta R, Palmason H, Bock C et al (2008) Functional analysis of a potassium-chloride co-transporter 3 (SLC12A6) promoter polymorphism leading to an additional DNA methylation site. Neuropsychopharmacology 34(2):458–467CrossRefPubMedGoogle Scholar
  49. Murrell A, Heeson S, Cooper WN, Douglas E, Apostolidou S et al (2004) An association between variants in the IGF2 gene and Beckwith-Wiedemann syndrome: interaction between genotype and epigenotype. Hum Mol Genet 13(2):247–255CrossRefPubMedGoogle Scholar
  50. Okamoto A (2009) Chemical approach toward efficient DNA methylation analysis. Org Biomol Chem 7(1):21–26CrossRefPubMedGoogle Scholar
  51. Oshlack A, Wakefield M (2009) Transcript length bias in RNA-seq data confounds systems biology. Biol Direct 4(1):14CrossRefPubMedGoogle Scholar
  52. Ozsolak F, Song JS, Liu XS, Fisher DE (2007) High-throughput mapping of the chromatin structure of human promoters. Nat Biotechnol 25(2):244–248CrossRefPubMedGoogle Scholar
  53. Peng S, Alekseyenko AA, Larschan E, Kuroda MI, Park PJ (2007) Normalization and experimental design for ChIP-chip data. BMC Bioinformatics 8:219CrossRefPubMedGoogle Scholar
  54. Richards EJ (2006) Inherited epigenetic variation–revisiting soft inheritance. Nat Rev Genet 7(5):395–401CrossRefPubMedGoogle Scholar
  55. Royce TE, Rozowsky JS, Gerstein MB (2007) Assessing the need for sequence-based normalization in tiling microarray experiments. Bioinformatics 23(8):988–997CrossRefPubMedGoogle Scholar
  56. Saha A, Wittmeyer J, Cairns BR (2006) Chromatin remodelling: the industrial revolution of DNA around histones. Nat Rev Mol Cell Biol 7(6):437–447CrossRefPubMedGoogle Scholar
  57. Schones DE, Zhao K (2008) Genome-wide approaches to studying chromatin modifications. Nat Rev Genet 9(3):179–191CrossRefPubMedGoogle Scholar
  58. Schumacher A, Kapranov P, Kaminsky Z, Flanagan J, Assadzadeh A et al (2006) Microarray-based DNA methylation profiling: technology and applications. Nucleic Acids Res 34(2):528–542CrossRefPubMedGoogle Scholar
  59. Segal E, Fondufe-Mittendorf Y, Chen L, Thåström A, Field Y et al (2006) A genomic code for nucleosome positioning. Nature 442(7104):772–778CrossRefPubMedGoogle Scholar
  60. Silva AJ, White R (1988) Inheritance of allelic blueprints for methylation patterns. Cell 54(2):145–152CrossRefPubMedGoogle Scholar
  61. Smith ZD, Gu H, Bock C, Gnirke A, Meissner A (2009) High-throughput bisulfite sequencing in mammalian genomes. Methods 48(3):226–232CrossRefPubMedGoogle Scholar
  62. Strahl BD, Allis CD (2000) The language of covalent histone modifications. Nature 403(6765):41–45CrossRefPubMedGoogle Scholar
  63. Suzuki MM, Bird A (2008) DNA methylation landscapes: provocative insights from epigenomics. Nat Rev Genet 9(6):465–476CrossRefPubMedGoogle Scholar
  64. Tremethick DJ (2007) Higher-order structures of chromatin: the elusive 30 nm fiber. Cell 128(4):651–654CrossRefPubMedGoogle Scholar
  65. Vega VB, Cheung E, Palanisamy N, Sung WK (2009) Inherent signals in sequencing-based Chromatin-ImmunoPrecipitation control libraries. PLoS ONE 4(4):e5241CrossRefPubMedGoogle Scholar
  66. Wang Z, Zang C, Rosenfeld JA, Schones DE, Barski A et al (2008) Combinatorial patterns of histone acetylations and methylations in the human genome. Nat Genet 40(7):897–903CrossRefPubMedGoogle Scholar
  67. Weaver IC, Cervoni N, Champagne FA, D’Alessio AC, Sharma S et al (2004) Epigenetic programming by maternal behavior. Nat Neurosci 7(8):847–854CrossRefPubMedGoogle Scholar
  68. Wei H, Kuan PF, Tian S, Yang C, Nie J et al (2008) A study of the relationships between oligonucleotide properties and hybridization signal intensities from NimbleGen microarray datasets. Nucleic Acids Res 36(9):2926–2938CrossRefPubMedGoogle Scholar
  69. Williams RB, Chan EK, Cowley MJ, Little PF (2007) The influence of genetic variation on gene expression. Genome Res 17(12):1707–1716CrossRefPubMedGoogle Scholar
  70. Wolff GL, Kodell RL, Moore SR, Cooney CA (1998) Maternal epigenetics and methyl supplements affect agouti gene expression in Avy/a mice. FASEB J 12(11):949–957PubMedGoogle Scholar
  71. Xu H, Wei CL, Lin F, Sung WK (2008) An HMM approach to genome-wide identification of differential histone modification sites from ChIP-seq data. Bioinformatics 24(20):2344–2349CrossRefPubMedGoogle Scholar
  72. Yamada Y, Watanabe H, Miura F, Soejima H, Uchiyama M et al (2004) A comprehensive analysis of allelic methylation status of CpG islands on human chromosome 21q. Genome Res 14(2):247–266CrossRefPubMedGoogle Scholar
  73. Yu H, Zhu S, Zhou B, Xue H, Han JD (2008) Inferring causal relationships among different histone modifications and gene expression. Genome Res 18(8):1314–1324CrossRefPubMedGoogle Scholar
  74. Zeisel SH (2009) Epigenetic mechanisms for nutrition determinants of later health outcomes. Am J Clin Nutr 89(5):1488S–1493SCrossRefPubMedGoogle Scholar
  75. Zhang Y, Shin H, Song JS, Lei Y, Liu XS (2008) Identifying positioned nucleosomes with epigenetic marks in human from ChIP-Seq. BMC Genomics 9:537CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Hugh J. French
    • 1
  • Rosalind Attenborough
    • 1
  • Kristine Hardy
    • 1
  • M. Frances Shannon
    • 1
  • Rohan B. H. Williams
    • 1
  1. 1.Genome Biology Program, John Curtin School of Medical ResearchAustralian National UniversityCanberra CityAustralia

Personalised recommendations