Mammalian Genome

, Volume 20, Issue 7, pp 414–423

A Cmv2 QTL on chromosome X affects MCMV resistance in New Zealand male mice

  • Marisela R. Rodriguez
  • Alyssa Lundgren
  • Pearl Sabastian
  • Qian Li
  • Gary Churchill
  • Michael G. Brown
Article

Abstract

NK cell-mediated resistance to viruses is subject to genetic control in humans and mice. Here we used classical and quantitative genetic strategies to examine NK-mediated murine cytomegalovirus (MCMV) control in genealogically related New Zealand white (NZW) and black (NZB) mice. NZW mice display NK cell-dependent MCMV resistance while NZB NK cells fail to limit viral replication after infection. Unlike Ly49H+ NK resistance in C57BL/6 mice, NZW NK-mediated MCMV control was Ly49H-independent. Instead, MCMV resistance in NZW (Cmv2) involves multiple genetic factors. To establish the genetic basis of Cmv2 resistance, we further characterized a major chromosome X-linked resistance locus (DXMit216) responsible for innate MCMV control in NZW × NZB crosses. We found that the DXMit216 locus affects early MCMV control in New Zealand F2 crosses and demonstrate that the NZB-derived DXMit216 allele enhances viral resistance in F2 males. The evolutionary conservation of the DXMit216 region in mice and humans suggests that a Cmv2-related mechanism may affect human antiviral responses.

Supplementary material

335_2009_9203_MOESM1_ESM.pdf (6.6 mb)
(PDF 6733 kb)

References

  1. Abiola O, Angel JM, Avner P, Bachmanov AA, Belknap JK et al (2003) The nature and identification of quantitative trait loci: a community’s view. Nat Rev Genet 4:911–916PubMedGoogle Scholar
  2. Broman KW, Sen S, Owens SE, Manichaikul A, Southard-Smith EM et al (2006) The X chromosome in quantitative trait locus mapping. Genetics 174:2151–2158PubMedCrossRefGoogle Scholar
  3. Brown MG, Scalzo AA (2008) NK gene complex dynamics and selection for NK cell receptors. Semin Immunol 20:361–368PubMedCrossRefGoogle Scholar
  4. Centers for Disease Control and Prevention (CDC) (2006) Cytomegalovirus. http://www.cdc.gov/cmv/facts.htm
  5. Dighe A, Rodriguez M, Sabastian P, Xie X, McVoy M et al (2005) Requisite H2 k role in NK cell-mediated resistance in acute murine cytomegalovirus-infected MA/My mice. J Immunol 175:6820–6828PubMedGoogle Scholar
  6. Dragani TA, Zeng ZB, Canzian F, Gariboldi M, Ghilarducci MT et al (1995) Mapping of body weight loci on mouse chromosome X. Mamm Genome 6:778–781PubMedCrossRefGoogle Scholar
  7. Fortin A, Stevenson MM, Gros P (2002) Complex genetic control of susceptibility to malaria in mice. Genes Immun 3:177–186PubMedCrossRefGoogle Scholar
  8. Hoelsbrekken SE, Nylenna Ø, Saether PC, Slettedal IO, Ryan JC et al (2003) Cutting edge: molecular cloning of a killer cell Ig-like receptor in the mouse and rat. J Immunol 170:2259–2263PubMedGoogle Scholar
  9. Ishimori N, Li R, Walsh KA, Korstanje R, Rollins JA et al (2006) Quantitative trait loci that determine BMD in C57BL/6 J and 129S1/SvImJ inbred mice. J Bone Miner Res 21:105–112PubMedCrossRefGoogle Scholar
  10. Ishimori N, Stylianou IM, Korstanje R, Marion MA, Li R et al (2008) Quantitative trait loci for BMD in an SM/J by NZB/BINJ intercross population and identification of Trps1 as a probable candidate gene. J Bone Miner Res 23:1529–1537PubMedCrossRefGoogle Scholar
  11. Kelley J, Walter L, Trowsdale J (2005) Comparative genomics of natural killer cell receptor gene clusters. PLoS Genet 1:129–139PubMedCrossRefGoogle Scholar
  12. Kumazawa M, Kobayashi M, Io F, Kawai T, Nishimura M et al (2007) Searching for genetic factors of fatty liver in SMXA-5 mice by quantitative trait loci analysis under a high-fat diet. J Lipid Res 48:2039–2046PubMedCrossRefGoogle Scholar
  13. Landolfo S, Gariglio M, Gribaudo G, Lembo D (2003) The human cytomegalovirus. Pharmacol Ther 98:269–297PubMedCrossRefGoogle Scholar
  14. Liu X, Bünger L, Keightley PD (2001) Characterization of a major X-linked quantitative trait locus influencing body weight of mice. J Hered 92:355–357PubMedCrossRefGoogle Scholar
  15. Malm G, Engman ML (2007) Congenital cytomegalovirus infections. Semin Fetal Neonatal Med 12:154–159PubMedCrossRefGoogle Scholar
  16. Orange JS (2002) Human natural killer cell deficiencies and susceptibility to infection. Microbes Infect 4:1545–1558PubMedCrossRefGoogle Scholar
  17. Rennekampff HO, Hamprecht K (2006) Cytomegalovirus infection in burns: a review. J Med Microbiol 55:483–487PubMedCrossRefGoogle Scholar
  18. Rodriguez M, Sabastian P, Clark P, Brown MG (2004) Cmv1-independent antiviral role of NK cells revealed in murine cytomegalovirus-infected New Zealand White mice. J Immunol 173:6312–6318PubMedGoogle Scholar
  19. Stylianou IM, Korstanje R, Li R, Sheehan S, Paigen B et al (2006) Quantitative trait locus analysis for obesity reveals multiple networks of interacting loci. Mamm Genome 17:22–36PubMedCrossRefGoogle Scholar
  20. Welch AY, Kasahara M, Spain LM (2003) Identification of the mouse killer immunoglobulin-like receptor-like (Kirl) gene family mapping to chromosome X. Immunogenetics 54:782–790PubMedGoogle Scholar
  21. Wheat RL, Clark PY, Brown MG (2003) Quantitative measurement of infectious murine cytomegalovirus genomes in real-time PCR. J Virol Methods 112:107–113PubMedCrossRefGoogle Scholar
  22. Wilson EB, Parachoniak CA, Carpenito C, Mager DL, Takei F (2007) Expression of murine killer immunoglobulin-like receptor KIRL1 on CD1d-independent NK1.1(+) T cells. Immunogenetics 59:641–651PubMedCrossRefGoogle Scholar
  23. Xie X, Dighe A, Clark P, Sabastian P, Buss S et al (2007) Deficient major histocompatibility complex-linked innate murine cytomegalovirus immunity in MA/My.L-H2b mice and viral downregulation of H-2 k class I proteins. J Virol 81:229–236PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Marisela R. Rodriguez
    • 1
    • 4
  • Alyssa Lundgren
    • 1
  • Pearl Sabastian
    • 1
  • Qian Li
    • 3
  • Gary Churchill
    • 3
  • Michael G. Brown
    • 1
    • 2
  1. 1.Department of MicrobiologyUniversity of Virginia School of MedicineCharlottesvilleUSA
  2. 2.Department of MedicineUniversity of Virginia School of MedicineCharlottesvilleUSA
  3. 3.The Jackson LaboratoryBar HarborUSA
  4. 4.Department of Internal Medicine, Division of RheumatologyWashington University in St. Louis Medical CenterSt. LouisUSA

Personalised recommendations