Mammalian Genome

, Volume 20, Issue 5, pp 261–268 | Cite as

Murine models of colorectal cancer

  • Joshua M. Uronis
  • David W. Threadgill


Colorectal cancer is one of the most prevalent cancers of humans. To experimentally investigate this common disease, numerous murine models have been established. These models accurately recapitulate the molecular and pathologic characteristics of human colorectal cancers, including activation of the myelocytomatosis oncogene (MYC), which has recently been suggested to be a key mediator of colorectal cancer development. This review focuses on the variety of murine models of human colorectal cancer that are available to the research community and on their use to identify common and distinct characteristics of colorectal cancer.


Familial Adenomatous Polyposis Transform Growth Factor Beta Dextran Sulfate Sodium Transform Growth Factor Beta Receptor Transform Growth Factor Beta Signaling 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Preparation of this review was supported in part by grants from the National Cancer Institute including the Mouse Models of Human Cancer Consortium and Specialized Program of Research Excellence in GI Cancer to DWT (U01CA105417, P50CA 106991, and R01CA092479). The intellectual environment provided by the Lineberger Cancer Center (P30CA016086) and the Center for Gastrointestinal Biology and Disease (P30DK34987) was essential.


  1. Amos-Landgraf JM, Kwong LN, Kendziorski CM, Reichelderfer M, Torrealba J et al (2007) A target-selected Apc-mutant rat kindred enhances the modeling of familial human colon cancer. Proc Natl Acad Sci USA 104:4036–4041PubMedCrossRefGoogle Scholar
  2. Batlle E, Bacani J, Begthel H, Jonkheer S, Gregorieff A et al (2005) EphB receptor activity suppresses colorectal cancer progression. Nature 435:1126–1130PubMedCrossRefGoogle Scholar
  3. Becker C, Fantini MC, Neurath MF (2006) High resolution colonoscopy in live mice. Nat Protoc 1:2900–2904PubMedCrossRefGoogle Scholar
  4. Blobe GC, Schiemann WP, Lodish HF (2000) Role of transforming growth factor beta in human disease. N Engl J Med 342:1350–1358PubMedCrossRefGoogle Scholar
  5. Boivin GP, Washington K, Yang K, Ward JM, Pretlow TP et al (2003) Pathology of mouse models of intestinal cancer: consensus report and recommendations. Gastroenterology 124:762–777PubMedCrossRefGoogle Scholar
  6. Cormier RT, Bilger A, Lillich AJ, Halberg RB, Hong KH et al (2000) The Mom1AKR intestinal tumor resistance region consists of Pla2g2a and a locus distal to D4Mit64. Oncogene 19:3182–3192PubMedCrossRefGoogle Scholar
  7. Derynck R, Akhurst RJ, Balmain A (2001) TGF-beta signaling in tumor suppression and cancer progression. Nat Genet 29:117–129PubMedCrossRefGoogle Scholar
  8. Diebold RJ, Eis MJ, Yin M, Ormsby I, Boivin GP et al (1995) Early-onset multifocal inflammation in the transforming growth factor beta 1-null mouse is lymphocyte mediated. Proc Natl Acad Sci USA 92:12215–12219PubMedCrossRefGoogle Scholar
  9. Dietrich WF, Lander ES, Smith JS, Moser AR, Gould KA et al (1993) Genetic identification of Mom-1, a major modifier locus affecting Min-induced intestinal neoplasia in the mouse. Cell 75:631–639PubMedCrossRefGoogle Scholar
  10. Dong M, Guda K, Nambiar PR, Nakanishi M, Lichtler AC et al (2004) Azoxymethane-induced pre-adipocyte factor 1 (Pref-1) functions as a differentiation inhibitor in colonic epithelial cells. Carcinogenesis 25:2239–2246PubMedCrossRefGoogle Scholar
  11. Druckrey H, Preussmann R, Matzkies F, Ivankovic S (1967) Selective production of intestinal cancer in rats by 1, 2-dimethylhydrazine. Naturwissenschaften 54:285–286PubMedCrossRefGoogle Scholar
  12. Edelmann W, Yang K, Umar A, Heyer J, Lau K et al (1997) Mutation in the mismatch repair gene Msh6 causes cancer susceptibility. Cell 91:467–477PubMedCrossRefGoogle Scholar
  13. Edelmann W, Yang K, Kuraguchi M, Heyer J, Lia M et al (1999) Tumorigenesis in Mlh1 and Mlh1/Apc1638N mutant mice. Cancer Res 59:1301–1307PubMedGoogle Scholar
  14. Edelmann W, Umar A, Yang K, Heyer J, Kucherlapati M et al (2000) The DNA mismatch repair genes Msh3 and Msh6 cooperate in intestinal tumor suppression. Cancer Res 60:803–807PubMedGoogle Scholar
  15. Engle SJ, Hoying JB, Boivin GP, Ormsby I, Gartside PS et al (1999) Transforming growth factor beta1 suppresses nonmetastatic colon cancer at an early stage of tumorigenesis. Cancer Res 59:3379–3386PubMedGoogle Scholar
  16. Eppert K, Scherer SW, Ozcelik H, Pirone R, Hoodless P et al (1996) MADR2 maps to 18q21 and encodes a TGFbeta-regulated MAD-related protein that is functionally mutated in colorectal carcinoma. Cell 86:543–552PubMedCrossRefGoogle Scholar
  17. Fodde R, Edelmann W, Yang K, van Leeuwen C, Carlson C et al (1994) A targeted chain-termination mutation in the mouse Apc gene results in multiple intestinal tumors. Proc Natl Acad Sci USA 91:8969–8973PubMedCrossRefGoogle Scholar
  18. Frederick JP, Liberati NT, Waddell DS, Shi Y, Wang XF (2004) Transforming growth factor beta-mediated transcriptional repression of c-myc is dependent on direct binding of Smad3 to a novel repressive Smad binding element. Mol Cell Biol 24:2546–2559PubMedCrossRefGoogle Scholar
  19. Ghaleb AM, McConnell BB, Nandan MO, Katz JP, Kaestner KH et al (2007) Haploinsufficiency of Kruppel-like factor 4 promotes adenomatous polyposis coli dependent intestinal tumorigenesis. Cancer Res 67:7147–7154PubMedCrossRefGoogle Scholar
  20. Grady WM, Rajput A, Myeroff L, Liu DF, Kwon K et al (1998) Mutation of the type II transforming growth factor-beta receptor is coincident with the transformation of human colon adenomas to malignant carcinomas. Cancer Res 58:3101–3104PubMedGoogle Scholar
  21. Groden J, Thliveris A, Samowitz W, Carlson M, Gelbert L et al (1991) Identification and characterization of the familial adenomatous polyposis coli gene. Cell 66:589–600PubMedCrossRefGoogle Scholar
  22. Hanada T, Kobayashi T, Chinen T, Saeki K, Takaki H et al (2006) IFNgamma-dependent, spontaneous development of colorectal carcinomas in SOCS1-deficient mice. J Exp Med 203:1391–1397PubMedCrossRefGoogle Scholar
  23. Hao H, Nancai Y, Lei F, Xiong W, Wen S et al (2008) siRNA directed against c-Myc inhibits proliferation and downregulates human telomerase reverse transcriptase in human colon cancer Colo 320 cells. J Exp Clin Cancer Res 27:27PubMedCrossRefGoogle Scholar
  24. Itzkowitz SH, Harpaz N (2004) Diagnosis and management of dysplasia in patients with inflammatory bowel diseases. Gastroenterology 126:1634–1648PubMedCrossRefGoogle Scholar
  25. Itzkowitz SH, Yio X (2004) Inflammation and cancer IV. Colorectal cancer in inflammatory bowel disease: the role of inflammation. Am J Physiol Gastrointest Liver Physiol 287:G7–G17PubMedCrossRefGoogle Scholar
  26. Kaiser S, Park YK, Franklin JL, Halberg RB, Yu M et al (2007) Transcriptional recapitulation and subversion of embryonic colon development by mouse colon tumor models and human colon cancer. Genome Biol 8:R131PubMedCrossRefGoogle Scholar
  27. Knoepfler PS (2007) Myc goes global: new tricks for an old oncogene. Cancer Res 67:5061–5063PubMedCrossRefGoogle Scholar
  28. Knoepfler PS, Zhang XY, Cheng PF, Gafken PR, McMahon SB et al (2006) Myc influences global chromatin structure. EMBO J 25:2723–2734PubMedCrossRefGoogle Scholar
  29. Kulkarni AB, Huh CG, Becker D, Geiser A, Lyght M et al (1993) Transforming growth factor beta 1 null mutation in mice causes excessive inflammatory response and early death. Proc Natl Acad Sci USA 90:770–774PubMedCrossRefGoogle Scholar
  30. Kuraguchi M, Yang K, Wong E, Avdievich E, Fan K et al (2001) The distinct spectra of tumor-associated Apc mutations in mismatch repair-deficient Apc1638N mice define the roles of MSH3 and MSH6 in DNA repair and intestinal tumorigenesis. Cancer Res 61:7934–7942PubMedGoogle Scholar
  31. Kwong LN, Shedlovsky A, Biehl BS, Clipson L, Pasch CA et al (2007) Identification of Mom7, a novel modifier of Apc(Min/+) on mouse chromosome 18. Genetics 176:1237–1244PubMedCrossRefGoogle Scholar
  32. Lynch HT, de la Chapelle A (2003) Hereditary colorectal cancer. N Engl J Med 348:919–932PubMedCrossRefGoogle Scholar
  33. MacPhee M, Chepenik KP, Liddell RA, Nelson KK, Siracusa LD et al (1995) The secretory phospholipase A2 gene is a candidate for the Mom1 locus, a major modifier of ApcMin-induced intestinal neoplasia. Cell 81:957–966PubMedCrossRefGoogle Scholar
  34. Maggio-Price L, Treuting P, Zeng W, Tsang M, Bielefeldt-Ohmann H et al (2006) Helicobacter infection is required for inflammation and colon cancer in SMAD3-deficient mice. Cancer Res 66:828–838PubMedCrossRefGoogle Scholar
  35. Mann B, Gelos M, Siedow A, Hanski ML, Gratchev A et al (1999) Target genes of beta-catenin-T cell-factor/lymphoid-enhancer-factor signaling in human colorectal carcinomas. Proc Natl Acad Sci USA 96:1603–1608PubMedCrossRefGoogle Scholar
  36. McCart AE, Vickaryous NK, Silver A (2008) Apc mice: models, modifiers and mutants. Pathol Res Pract 204:479–490PubMedCrossRefGoogle Scholar
  37. Morin PJ, Sparks AB, Korinek V, Barker N, Clevers H et al (1997) Activation of beta-catenin-Tcf signaling in colon cancer by mutations in beta-catenin or APC. Science 275:1787–1790PubMedCrossRefGoogle Scholar
  38. Moser AR, Pitot HC, Dove WF (1990) A dominant mutation that predisposes to multiple intestinal neoplasia in the mouse. Science 247:322–324PubMedCrossRefGoogle Scholar
  39. Moser AR, Dove WF, Roth KA, Gordon JI (1992) The Min (multiple intestinal neoplasia) mutation: its effect on gut epithelial cell differentiation and interaction with a modifier system. J Cell Biol 116:1517–1526PubMedCrossRefGoogle Scholar
  40. Nordlinger B, Panis Y, Puts JP, Herve JP, Delelo R et al (1991) Experimental model of colon cancer: recurrences after surgery alone or associated with intraperitoneal 5-fluorouracil chemotherapy. Dis Colon Rectum 34:658–663PubMedCrossRefGoogle Scholar
  41. Nüsslein-Volhard C, Wieschaus E (1980) Mutations affecting segment number and polarity in Drosophila. Nature 287:795–801PubMedCrossRefGoogle Scholar
  42. Okayasu I, Hatakeyama S, Yamada M, Ohkusa T, Inagaki Y et al (1990) A novel method in the induction of reliable experimental acute and chronic ulcerative colitis in mice. Gastroenterology 98:694–702PubMedGoogle Scholar
  43. Oshima M, Oshima H, Kitagawa K, Kobayashi M, Itakura C et al (1995) Loss of Apc heterozygosity and abnormal tissue building in nascent intestinal polyps in mice carrying a truncated Apc gene. Proc Natl Acad Sci USA 92:4482–4486PubMedCrossRefGoogle Scholar
  44. Owen DA (1996) Flat adenoma, flat carcinoma, and de novo carcinoma of the colon. Cancer 77:3–6PubMedCrossRefGoogle Scholar
  45. Papanikolaou A, Wang QS, Delker DA, Rosenberg DW (1998) Azoxymethane-induced colon tumors and aberrant crypt foci in mice of different genetic susceptibility. Cancer Lett 130:29–34PubMedCrossRefGoogle Scholar
  46. Powell SM, Zilz N, Beazer-Barclay Y, Bryan TM, Hamilton SR et al (1992) APC mutations occur early during colorectal tumorigenesis. Nature 359:235–237PubMedCrossRefGoogle Scholar
  47. Reitmair AH, Cai JC, Bjerknes M, Redston M, Cheng H et al (1996) MSH2 deficiency contributes to accelerated APC-mediated intestinal tumorigenesis. Cancer Res 56:2922–2926PubMedGoogle Scholar
  48. Rigby RJ, Simmons JG, Greenhalgh CJ, Alexander WS, Lund PK (2007) Suppressor of cytokine signaling 3 (SOCS3) limits damage-induced crypt hyper-proliferation and inflammation-associated tumorigenesis in the colon. Oncogene 26:4833–4841PubMedCrossRefGoogle Scholar
  49. Roberts RB, Min L, Washington MK, Olsen SJ, Settle SH et al (2002) Importance of epidermal growth factor receptor signaling in establishment of adenomas and maintenance of carcinomas during intestinal tumorigenesis. Proc Natl Acad Sci USA 99:1521–1526PubMedCrossRefGoogle Scholar
  50. Ruivenkamp CA, van Wezel T, Zanon C, Stassen AP, Vlcek C et al (2002) Ptprj is a candidate for the mouse colon-cancer susceptibility locus Scc1 and is frequently deleted in human cancers. Nat Genet 31:295–300PubMedCrossRefGoogle Scholar
  51. Saitoh Y, Waxman I, West AB, Popnikolov NK, Gatalica Z et al (2001) Prevalence and distinctive biologic features of flat colorectal adenomas in a North American population. Gastroenterology 120:1657–1665PubMedCrossRefGoogle Scholar
  52. Sansom OJ, Meniel VS, Muncan V, Phesse TJ, Wilkins JA et al (2007) Myc deletion rescues Apc deficiency in the small intestine. Nature 446:676–679PubMedCrossRefGoogle Scholar
  53. Shao J, Washington MK, Saxena R, Sheng H (2007) Heterozygous disruption of the PTEN promotes intestinal neoplasia in APCmin/+ mouse: roles of osteopontin. Carcinogenesis 28:2476–2483PubMedCrossRefGoogle Scholar
  54. Shull MM, Ormsby I, Kier AB, Pawlowski S, Diebold RJ et al (1992) Targeted disruption of the mouse transforming growth factor-beta 1 gene results in multifocal inflammatory disease. Nature 359:693–699PubMedCrossRefGoogle Scholar
  55. Sodir NM, Chen X, Park R, Nickel AE, Conti PS et al (2006) Smad3 deficiency promotes tumorigenesis in the distal colon of ApcMin/+ mice. Cancer Res 66:8430–8438PubMedCrossRefGoogle Scholar
  56. Soetikno R, Friedland S, Kaltenbach T, Chayama K, Tanaka S (2006) Nonpolypoid (flat and depressed) colorectal neoplasms. Gastroenterology 130:566–576 quiz 588-569PubMedCrossRefGoogle Scholar
  57. Soetikno RM, Kaltenbach T, Rouse RV, Park W, Maheshwari A et al (2008) Prevalence of nonpolypoid (flat and depressed) colorectal neoplasms in asymptomatic and symptomatic adults. JAMA 299:1027–1035PubMedCrossRefGoogle Scholar
  58. Speake D, Biyani D, Frizelle FA, Watson AJ (2007) Flat adenomas. ANZ J Surg 77:4–8PubMedCrossRefGoogle Scholar
  59. Starr TK, Allaei R, Silverstein KA, Staggs RA, Sarver AL et al (2009) A transposon-based genetic screen in mice identifies genes altered in colorectal cancer. Science 323:1747–1750PubMedCrossRefGoogle Scholar
  60. Su LK, Kinzler KW, Vogelstein B, Preisinger AC, Moser AR et al (1992) Multiple intestinal neoplasia caused by a mutation in the murine homolog of the APC gene. Science 256:668–670PubMedCrossRefGoogle Scholar
  61. Sutherland KD, Vaillant F, Alexander WS, Wintermantel TM, Forrest NC et al (2006) c-myc as a mediator of accelerated apoptosis and involution in mammary glands lacking Socs3. EMBO J 25:5805–5815PubMedCrossRefGoogle Scholar
  62. Takagi Y, Kohmura H, Futamura M, Kida H, Tanemura H et al (1996) Somatic alterations of the DPC4 gene in human colorectal cancers in vivo. Gastroenterology 111:1369–1372PubMedCrossRefGoogle Scholar
  63. Takahashi M, Nakatsugi S, Sugimura T, Wakabayashi K (2000) Frequent mutations of the beta-catenin gene in mouse colon tumors induced by azoxymethane. Carcinogenesis 21:1117–1120PubMedCrossRefGoogle Scholar
  64. Takaku K, Oshima M, Miyoshi H, Matsui M, Seldin MF et al (1998) Intestinal tumorigenesis in compound mutant mice of both Dpc4 (Smad4) and Apc genes. Cell 92:645–656PubMedCrossRefGoogle Scholar
  65. Tanaka T, Kohno H, Suzuki R, Yamada Y, Sugie S et al (2003) A novel inflammation-related mouse colon carcinogenesis model induced by azoxymethane and dextran sodium sulfate. Cancer Sci 94:965–973PubMedCrossRefGoogle Scholar
  66. Thiagalingam S, Lengauer C, Leach FS, Schutte M, Hahn SA et al (1996) Evaluation of candidate tumour suppressor genes on chromosome 18 in colorectal cancers. Nat Genet 13:343–346PubMedCrossRefGoogle Scholar
  67. Torrance CJ, Jackson PE, Montgomery E, Kinzler KW, Vogelstein B et al (2000) Combinatorial chemoprevention of intestinal neoplasia. Nat Med 6:1024–1028PubMedCrossRefGoogle Scholar
  68. Uronis JM, Herfarth HH, Rubinas TC, Bissahoyo AC, Hanlon K et al (2007) Flat colorectal cancers are genetically determined and progress to invasion without going through a polypoid stage. Cancer Res 67:11594–11600PubMedCrossRefGoogle Scholar
  69. Wald D, Qin J, Zhao Z, Qian Y, Naramura M et al (2003) SIGIRR, a negative regulator of Toll-like receptor-interleukin 1 receptor signaling. Nat Immunol 4:920–927PubMedCrossRefGoogle Scholar
  70. Wang QS, Papanikolaou A, Sabourin CL, Rosenberg DW (1998) Altered expression of cyclin D1 and cyclin-dependent kinase 4 in azoxymethane-induced mouse colon tumorigenesis. Carcinogenesis 19:2001–2006PubMedCrossRefGoogle Scholar
  71. Wirtz S, Neurath MF (2007) Mouse models of inflammatory bowel disease. Adv Drug Deliv Rev 59:1073–1083PubMedCrossRefGoogle Scholar
  72. Xiao H, Gulen MF, Qin J, Yao J, Bulek K et al (2007) The Toll-interleukin-1 receptor member SIGIRR regulates colonic epithelial homeostasis, inflammation, and tumorigenesis. Immunity 26:461–475PubMedCrossRefGoogle Scholar
  73. Yekkala K, Baudino TA (2007) Inhibition of intestinal polyposis with reduced angiogenesis in ApcMin/+ mice due to decreases in c-Myc expression. Mol Cancer Res 5:1296–1303PubMedCrossRefGoogle Scholar
  74. Zan Y, Haag JD, Chen KS, Shepel LA, Wigington D et al (2003) Production of knockout rats using ENU mutagenesis and a yeast-based screening assay. Nat Biotechnol 21:645–651PubMedCrossRefGoogle Scholar
  75. Zhang X, Ge YL, Tian RH (2009) The knockdown of c-myc expression by RNAi inhibits cell proliferation in human colon cancer HT-29 cells in vitro and in vivo. Cell Mol Biol Lett 14:305–318PubMedCrossRefGoogle Scholar
  76. Zhu Y, Richardson JA, Parada LF, Graff JM (1998) Smad3 mutant mice develop metastatic colorectal cancer. Cell 94:703–714PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Curriculum in Genetics and Molecular Biology, Department of Genetics, Lineberger Cancer Center and Center for Gastrointestinal Biology and DiseaseUniversity of North CarolinaChapel HillUSA
  2. 2.Department of GeneticsNorth Carolina State UniversityRaleighUSA

Personalised recommendations