Mammalian Genome

, Volume 20, Issue 5, pp 296–304 | Cite as

An N-ethyl-N-nitrosourea mutagenesis recessive screen identifies two candidate regions for murine cardiomyopathy that map to chromosomes 1 and 15

  • Liliana Fernandez
  • Douglas A. Marchuk
  • Jennifer L. Moran
  • David R. Beier
  • Howard A. RockmanEmail author


N-ethyl-N-nitrosourea (ENU) mutagenesis screens have been successful for identifying genes that affect important biological processes and diseases. However, for heart-related phenotypes, these screens have been employed exclusively for developmental phenotypes, and to date no adult cardiomyopathy-causing genes have been discovered through a mutagenesis screen. To identify novel disease-causing and disease-modifying genes for cardiomyopathy, we performed an ENU recessive mutagenesis screen in adult mice. Using noninvasive echocardiography to screen for abnormalities in cardiac function, we identified a heritable cardiomyopathic phenotype in two families. To identify the chromosomal regions where the mutations are localized, we used a single nucleotide polymorphism (SNP) panel for genetic mapping of mouse mutations. This panel provided whole-genome linkage information and identified the mutagenized candidate regions at the proximal end of chromosome 1 (family EN1), and at the distal end of chromosome 15 (family EN25). We have identified 94 affected mice in family EN1 and have narrowed the candidate interval to 1 Mb. We have identified 20 affected mice in family EN25 and have narrowed the candidate interval to 12 Mb. The identification of the genes responsible for the observed phenotype in these families will be strong candidates for disease-causing or disease-modifying genes in patients with heart failure.


Dilate Cardiomyopathy Emerin Mutagenesis Screen Phenotypic Screen Conscious Mouse 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank Lan Mao, Kristine Porter, and Barbara Williams for their outstanding technical assistance. This research was funded by an American Heart Association Postdoctoral Fellowship 0625436U to LF, U01 HD43430 to DB, and the National Institutes of Health grant HL083065 to HAR.

Supplementary material

335_2009_9184_MOESM1_ESM.pdf (42 kb)
Supplementary material 1 (PDF 43 kb)
335_2009_9184_MOESM2_ESM.pdf (29 kb)
Supplementary material 1 (PDF 30 kb)


  1. Beier DR, Herron BJ (2004) Genetic mapping and ENU mutagenesis. Genetica 122(1):65–69PubMedCrossRefGoogle Scholar
  2. Board PG (1998) Identification of cDNAs encoding two human alpha class glutathione transferases (GSTA3 and GSTA4) and the heterologous expression of GSTA4-4. Biochem J 330(Pt 2):827–831PubMedGoogle Scholar
  3. Chin BB, Metzler SD et al (2007) Left ventricular functional assessment in mice: feasibility of high spatial and temporal resolution ECG-gated blood pool SPECT. Radiology 245(2):440–448PubMedCrossRefGoogle Scholar
  4. Clark AT, Goldowitz D et al (2004) Implementing large-scale ENU mutagenesis screens in North America. Genetica 122(1):51–64PubMedCrossRefGoogle Scholar
  5. Colombo MG, Botto N et al (2008) Clinical utility of genetic tests for inherited hypertrophic and dilated cardiomyopathies. Cardiovasc Ultrasound 6:62PubMedCrossRefGoogle Scholar
  6. Cordes SP (2005) N-ethyl-N-nitrosourea mutagenesis: boarding the mouse mutant express. Microbiol Mol Biol Rev 69(3):426–439PubMedCrossRefGoogle Scholar
  7. Davis AP, Woychik RP et al (1999) Effective chemical mutagenesis in FVB/N mice requires low doses of ethylnitrosourea. Mamm Genome 10(3):308–310PubMedCrossRefGoogle Scholar
  8. Esposito G, Santana LF et al (2000) Cellular and functional defects in a mouse model of heart failure. Am J Physiol Heart Circ Physiol 279(6):H3101–H3112PubMedGoogle Scholar
  9. Hagge-Greenberg A, Snow P et al (2001) Establishing an ENU mutagenesis screen for the piebald region of mouse Chromosome 14. Mamm Genome 12(12):938–941PubMedCrossRefGoogle Scholar
  10. Hershberger RE, Lindenfeld J et al (2009) Genetic evaluation of cardiomyopathy—a Heart Failure Society of America practice guideline. J Card Fail 15(2):83–97PubMedCrossRefGoogle Scholar
  11. Justice MJ, Carpenter DA et al (2000) Effects of ENU dosage on mouse strains. Mamm Genome 11(7):484–488PubMedCrossRefGoogle Scholar
  12. Lander ES, Botstein D (1987) Homozygosity mapping: a way to map human recessive traits with the DNA of inbred children. Science 236(4808):1567–1570PubMedCrossRefGoogle Scholar
  13. Le Corvoisier P, Park HY et al (2003) Multiple quantitative trait loci modify the heart failure phenotype in murine cardiomyopathy. Hum Mol Genet 12(23):3097–3107PubMedCrossRefGoogle Scholar
  14. Moran JL, Bolton AD et al (2006) Utilization of a whole genome SNP panel for efficient genetic mapping in the mouse. Genome Res 16(3):436–440PubMedCrossRefGoogle Scholar
  15. Percec I, Thorvaldsen JL et al (2003) An N-ethyl-N-nitrosourea mutagenesis screen for epigenetic mutations in the mouse. Genetics 164(4):1481–1494PubMedGoogle Scholar
  16. Stefanovic B, Stefanovic L et al (2004) TRAM2 protein interacts with endoplasmic reticulum Ca2+ pump Serca2b and is necessary for collagen type I synthesis. Mol Cell Biol 24(4):1758–1768PubMedCrossRefGoogle Scholar
  17. Svenson KL, Bogue MA et al (2003) Invited review: Identifying new mouse models of cardiovascular disease: a review of high-throughput screens of mutagenized and inbred strains. J Appl Physiol 94(4):1650–1659 (discussion 1673)PubMedGoogle Scholar
  18. Sylvius N, Tesson F et al (2001) A new locus for autosomal dominant dilated cardiomyopathy identified on chromosome 6q12–q16. Am J Hum Genet 68(1):241–246PubMedCrossRefGoogle Scholar
  19. Tanaka N, Dalton N et al (1996) Transthoracic echocardiography in models of cardiac disease in the mouse. Circulation 94(5):1109–1117PubMedGoogle Scholar
  20. Tetlow N, Coggan M et al (2004) Functional polymorphism of human glutathione transferase A3: effects on xenobiotic metabolism and steroid biosynthesis. Pharmacogenetics 14(10):657–663PubMedCrossRefGoogle Scholar
  21. Weber JS, Salinger A et al (2000) Optimal N-ethyl-N-nitrosourea (ENU) doses for inbred mouse strains. Genesis 26(4):230–233PubMedCrossRefGoogle Scholar
  22. Yu Q, Shen Y et al (2004) ENU induced mutations causing congenital cardiovascular anomalies. Development 131(24):6211–6223PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Liliana Fernandez
    • 1
  • Douglas A. Marchuk
    • 2
  • Jennifer L. Moran
    • 3
  • David R. Beier
    • 4
  • Howard A. Rockman
    • 1
    • 2
    Email author
  1. 1.Department of MedicineDuke University Medical CenterDurhamUSA
  2. 2.Department Molecular Genetics and MicrobiologyDuke University Medical CenterDurhamUSA
  3. 3.Genetic Analysis PlatformBroad Institute of MIT and HarvardCambridgeUSA
  4. 4.Division of GeneticsBrigham & Women’s Hospital and Harvard Medical SchoolBostonUSA

Personalised recommendations