Advertisement

Mammalian Genome

, 19:570 | Cite as

Identification and characterization of new microRNAs from pig

  • Jung Kim
  • Ik Sang Cho
  • Jae Sang Hong
  • Young Ki Choi
  • Hyunggee Kim
  • Young Sik Lee
Article

Abstract

MicroRNAs (miRNAs) are small regulatory RNAs that direct the posttranscriptional repression of cognate messenger RNAs. Despite increasing evidence for diverse roles of miRNAs in biological processes, little is known about miRNAs in pig. We describe the first experimental identification of porcine miRNAs by sequence analysis of a cDNA library of small RNAs from porcine fibroblast cells. We identified 25 distinct porcine miRNAs, of which 19 are previously unreported, and define 14 new miRNA families in pig. Most of the cloned miRNAs are expressed ubiquitously in all porcine tissues examined, whereas some miRNAs are expressed preferentially in specific tissues. Our results enrich the porcine miRNA database and provide useful information for investigating biological functions of miRNAs in pig.

Keywords

miRNA Family Hairpin Structure miRNA Precursor Precursor Sequence Porcine Tissue 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was supported by a grant (20070301034036) from the BioGreen 21 Program, Rural Development Administration, Republic of Korea.

Supplementary material

335_2008_9111_MOESM1_ESM.pdf (131 kb)
(PDF 132 kb)
335_2008_9111_MOESM2_ESM.pdf (21 kb)
(PDF 21 kb)
335_2008_9111_MOESM3_ESM.xls (48 kb)
(XLS 47 kb)

References

  1. Altuvia Y, Landgraf P, Lithwick G, Elefant N, Pfeffer S et al (2005) Clustering and conservation patterns of human microRNAs. Nucleic Acids Res 33:2697–2706PubMedCrossRefGoogle Scholar
  2. Ambros V, Bartel B, Bartel DP, Burge CB, Carrington JC et al (2003) A uniform system for microRNA annotation. RNA 9:277–279PubMedCrossRefGoogle Scholar
  3. Aravin A, Tuschl T (2005) Identification and characterization of small RNAs involved in RNA silencing. FEBS Lett 579:5830–5840PubMedCrossRefGoogle Scholar
  4. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297PubMedCrossRefGoogle Scholar
  5. Baskerville S, Bartel DP (2005) Microarray profiling of microRNAs reveals frequent coexpression with neighboring miRNAs and host genes. RNA 11:241–247PubMedCrossRefGoogle Scholar
  6. Bentwich I, Avniel A, Karov Y, Aharonov R, Gilad S et al (2005) Identification of hundreds of conserved and nonconserved human microRNAs. Nat Genet 37:766–770PubMedCrossRefGoogle Scholar
  7. Berezikov E, Guryev V, van de Belt J, Wienholds E, Plasterk RH et al (2005) Phylogenetic shadowing and computational identification of human microRNA genes. Cell 120:21–24PubMedCrossRefGoogle Scholar
  8. Bernstein E, Caudy AA, Hammond SM, Hannon GJ (2001) Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409:363–366PubMedCrossRefGoogle Scholar
  9. Bullard DR, Bowater RP (2006) Direct comparison of nick-joining activity of the nucleic acid ligases from bacteriophage T4. Biochem J 398:135–144PubMedCrossRefGoogle Scholar
  10. Conaco C, Otto S, Han JJ, Mandel G (2006) Reciprocal actions of REST and a microRNA promote neuronal identity. Proc Natl Acad Sci U S A 103:2422–2427PubMedCrossRefGoogle Scholar
  11. Esau C, Davis S, Murray SF, Yu XX, Pandey SK et al (2006) miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metab 3:87–98PubMedCrossRefGoogle Scholar
  12. Griffiths-Jones S, Saini HK, van Dongen S, Enright AJ (2008) miRBase: tools for microRNA genomics. Nucleic Acids Res 36:D154–D158PubMedCrossRefGoogle Scholar
  13. Grishok A, Pasquinelli AE, Conte D, Li N, Parrish S et al (2001) Genes and mechanisms related to RNA interference regulate expression of the small temporal RNAs that control C. elegans developmental timing. Cell 106:23–34PubMedCrossRefGoogle Scholar
  14. He L, Hannon GJ (2004) MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet 5:522–531PubMedCrossRefGoogle Scholar
  15. Hutvagner G, Zamore PD (2002) A microRNA in a multiple-turnover RNAi enzyme complex. Science 297:2056–2060PubMedCrossRefGoogle Scholar
  16. Hutvagner G, McLachlan J, Pasquinelli AE, Balint E, Tuschl T et al (2001) A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science 293:834–838PubMedCrossRefGoogle Scholar
  17. Iorio MV, Visone R, Di Leva G, Donati V, Petrocca F et al (2007) MicroRNA signatures in human ovarian cancer. Cancer Res 67:8699–8707PubMedCrossRefGoogle Scholar
  18. Ketting RF, Fischer SE, Bernstein E, Sijen T, Hannon GJ et al (2001) Dicer functions in RNA interference and in synthesis of small RNA involved in developmental timing in C. elegans. Genes Dev 15:2654–2659PubMedCrossRefGoogle Scholar
  19. Khvorova A, Reynolds A, Jayasena SD (2003) Functional siRNAs and miRNAs exhibit strand bias. Cell 115:209–216PubMedCrossRefGoogle Scholar
  20. Kim HJ, Cui XS, Kim EJ, Kim WJ, Kim NH (2006) New porcine microRNA genes found by homology search. Genome 49:1283–1286PubMedCrossRefGoogle Scholar
  21. Kloosterman WP, Plasterk RH (2006) The diverse functions of microRNAs in animal development and disease. Dev Cell 11:441–450PubMedCrossRefGoogle Scholar
  22. Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T (2001) Identification of novel genes coding for small expressed RNAs. Science 294:853–858PubMedCrossRefGoogle Scholar
  23. Lagos-Quintana M, Rauhut R, Yalcin A, Meyer J, Lendeckel W et al (2002) Identification of tissue-specific microRNAs from mouse. Curr Biol 12:735–739PubMedCrossRefGoogle Scholar
  24. Lagos-Quintana M, Rauhut R, Meyer J, Borkhardt A, Tuschl T (2003) New microRNAs from mouse and human. RNA 9:175–179PubMedCrossRefGoogle Scholar
  25. Landgraf P, Rusu M, Sheridan R, Sewer A, Iovino N et al (2007) A mammalian microRNA expression atlas based on small RNA library sequencing. Cell 129:1401–1414PubMedCrossRefGoogle Scholar
  26. Lau NC, Lim LP, Weinstein EG, Bartel DP (2001) An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science 294:858–862PubMedCrossRefGoogle Scholar
  27. Lee RC, Ambros V (2001) An extensive class of small RNAs in Caenorhabditis elegans. Science 294:862–864PubMedCrossRefGoogle Scholar
  28. Lee Y, Ahn C, Han J, Choi H, Kim J et al (2003) The nuclear RNase III Drosha initiates microRNA processing. Nature 425:415–419PubMedCrossRefGoogle Scholar
  29. Lee Y, Kim M, Han J, Yeom KH, Lee S et al (2004) MicroRNA genes are transcribed by RNA polymerase II. EMBO J 23:4051–4060PubMedCrossRefGoogle Scholar
  30. Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120:15–20PubMedCrossRefGoogle Scholar
  31. Lim LP, Lau NC, Garrett-Engele P, Grimson A, Schelter JM et al (2005) Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 433:769–773PubMedCrossRefGoogle Scholar
  32. Maroney PA, Chamnongpol S, Souret F, Nilsen TW (2007) A rapid, quantitative assay for direct detection of microRNAs and other small RNAs using splinted ligation. RNA 13:930–936PubMedCrossRefGoogle Scholar
  33. Moore MJ, Query CC (2000) Joining of RNAs by splinted ligation. Methods Enzymol 317:109–123PubMedCrossRefGoogle Scholar
  34. Oh HY, Jin X, Kim JG, Oh MJ, Pian X et al (2007) Characteristics of primary and immortalized fibroblast cells derived from the miniature and domestic pigs. BMC Cell Biol 8:20PubMedCrossRefGoogle Scholar
  35. Ruby JG, Jan C, Player C, Axtell MJ, Lee W et al (2006) Large-scale sequencing reveals 21U-RNAs and additional microRNAs and endogenous siRNAs in C. elegans. Cell 127:1193–1207PubMedCrossRefGoogle Scholar
  36. Ruby JG, Stark A, Johnston WK, Kellis M, Bartel DP et al (2007) Evolution, biogenesis, expression, and target predictions of a substantially expanded set of Drosophila microRNAs. Genome Res 17:1850–1864PubMedCrossRefGoogle Scholar
  37. Sawera M, Gorodkin J, Cirera S, Fredholm M (2005) Mapping and expression studies of the mir17–92 cluster on pig chromosome 11. Mamm Genome 16:594–598PubMedCrossRefGoogle Scholar
  38. Schwarz DS, Hutvagner G, Du T, Xu Z, Aronin N et al (2003) Asymmetry in the assembly of the RNAi enzyme complex. Cell 115:199–208PubMedCrossRefGoogle Scholar
  39. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680PubMedCrossRefGoogle Scholar
  40. Wernersson R, Schierup MH, Jorgensen FG, Gorodkin J, Panitz F et al (2005) Pigs in sequence space: a 0.66X coverage pig genome survey based on shotgun sequencing. BMC Genomics 6:70PubMedCrossRefGoogle Scholar
  41. Zhang L, Huang J, Yang N, Greshock J, Megraw MS et al (2006) microRNAs exhibit high frequency genomic alterations in human cancer. Proc Natl Acad Sci U S A 103:9136–9141PubMedCrossRefGoogle Scholar
  42. Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31:3406–3415PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Jung Kim
    • 1
  • Ik Sang Cho
    • 1
  • Jae Sang Hong
    • 1
  • Young Ki Choi
    • 2
  • Hyunggee Kim
    • 1
  • Young Sik Lee
    • 1
  1. 1.Division of Biotechnology, College of Life Sciences and BiotechnologyKorea UniversitySeoulSouth Korea
  2. 2.College of Medicine and Medical Research InstituteChungbuk National UniversityCheongjuSouth Korea

Personalised recommendations