Mammalian Genome

, Volume 19, Issue 5, pp 318–331

Genetic background determines metabolic phenotypes in the mouse

  • Marie-France Champy
  • Mohammed Selloum
  • Valérie Zeitler
  • Claudia Caradec
  • Barbara Jung
  • Stéphane Rousseau
  • Laurent Pouilly
  • Tania Sorg
  • Johan Auwerx
Article

Abstract

To evaluate the contribution of genetic background to phenotypic variation, we compared a large range of biochemical and metabolic parameters at different ages of four inbred mice strains, C57BL/6J, 129SvPas, C3HeB/FeJ, and Balb/cByJ. Our results demonstrate that important metabolic, hematologic, and biochemical differences exist between these different inbred strains. Most of these differences are gender independent and are maintained or accentuated throughout life. It is therefore imperative that the genetic background is carefully defined in phenotypic studies. Our results also argue that certain backgrounds are more suited to study a given physiologic phenomenon, as distinct mouse strains have a different propensity to develop particular biochemical, hematologic, and metabolic abnormalities. These genetic differences can furthermore be exploited to identify new genes/proteins that contribute to phenotypic abnormalities. The choice of the genetic background in which to generate and analyze genetically engineered mutant mice is important as it is, together with environmental factors, one of the most important contributors to the variability of phenotypic results.

References

  1. Argmann CA, Chambon P, Auwerx J (2005) Mouse phenogenomics: the fast track to “systems metabolism.” Cell Metab 2:349–360PubMedCrossRefGoogle Scholar
  2. Austin CP, Battey JF, Bradley A, Bucan M, Capecchi M et al (2004) The knockout mouse project. Nat Genet 36:921–924PubMedCrossRefGoogle Scholar
  3. Auwerx J, Avner P, Baldock R, Ballabio A, Balling R et al (2004) The European dimension for the mouse genome mutagenesis program. Nat Genet 36:925–927PubMedCrossRefGoogle Scholar
  4. Banbury Conference (1997) Mutant mice and neuroscience: recommendations concerning genetic background. Banbury Conference on genetic background in mice. Neuron 19:755–759CrossRefGoogle Scholar
  5. Brown SD, Chambon P, de Angelis MH (2005) EMPReSS: standardized phenotype screens for functional annotation of the mouse genome. Nat Genet 37:1155PubMedCrossRefGoogle Scholar
  6. Champy MF, Selloum M, Piard L, Zeitler V, Caradec C et al (2004) Mouse functional genomics requires standardization of mouse handling and housing conditions. Mamm Genome 15:768–783PubMedCrossRefGoogle Scholar
  7. Collins SC, Wallis RH, Wallace K, Bihoreau MT, Gauguier D (2003) Marker-assisted congenic screening (MACS): a database tool for the efficient production and characterization of congenic lines. Mamm Genome 14:350–356PubMedCrossRefGoogle Scholar
  8. Collins FS, Rossant J, Wurst W (2007) A mouse for all reasons. Cell 128:9–13PubMedCrossRefGoogle Scholar
  9. Crabbe JC, Wahlsten D, Dudek BC (1999) Genetics of mouse behavior: interactions with laboratory environment. Science 284:1670–1672PubMedCrossRefGoogle Scholar
  10. Freeman HC, Hugill A, Dear NT, Ashcroft FM, Cox RD (2006) Deletion of nicotinamide nucleotide transhydrogenase: a new quantitive trait locus accounting for glucose intolerance in C57BL/6J mice. Diabetes 55:2153–2156PubMedCrossRefGoogle Scholar
  11. Nobrega MA, Pennacchio LA (2004) Comparative genomic analysis as a tool for biological discovery. J Physiol 554:31–39PubMedCrossRefGoogle Scholar
  12. O’Brien T, Woychik R (2003) Our small relative. Nat Genet 33:3–4PubMedCrossRefGoogle Scholar
  13. Paigen B, Morrow A, Brandon C, Mitchell D, Holmes P (1985) Variation in susceptibility to atherosclerosis among inbred strains of mice. Atherosclerosis 57:65–73PubMedCrossRefGoogle Scholar
  14. Picard F, Gehin M, Annicotte JS, Rocchi S, Champy MF et al (2002) SRC-1 and TIF2 control energy balance between white and brown adipose tissues. Cell 111:931–941PubMedCrossRefGoogle Scholar
  15. Schreyer SA, Wilson DL, LeBoeuf RC (1998) C57BL/6 mice fed high fat diets as models for diabetes-accelerated atherosclerosis. Atherosclerosis 136:17–24PubMedCrossRefGoogle Scholar
  16. Solberg LC, Valdar W, Gauguier D, Nunez G, Taylor A et al (2006) A protocol for high-throughput phenotyping, suitable for quantitative trait analysis in mice. Mamm Genome 17:129–146PubMedCrossRefGoogle Scholar
  17. Stiedl O, Radulovic J, Lohmann R, Birkenfeld K, Palve M et al (1999) Strain and substrain differences in context- and tone-dependent fear conditioning of inbred mice. Behav Brain Res 104:1–12PubMedCrossRefGoogle Scholar
  18. Upchurch M, Wehner JM (1988) Differences between inbred strains of mice in Morris water maze performance. Behav Genet 18:55–68PubMedCrossRefGoogle Scholar
  19. Uppaluri R, Towle HC (1995) Genetic dissection of thyroid hormone receptor b: identification of mutations that separate hormone binding and transcriptional activation. Mol Cell Biol 15:1499–1512PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Marie-France Champy
    • 1
  • Mohammed Selloum
    • 1
  • Valérie Zeitler
    • 1
  • Claudia Caradec
    • 1
  • Barbara Jung
    • 1
  • Stéphane Rousseau
    • 1
  • Laurent Pouilly
    • 1
  • Tania Sorg
    • 1
  • Johan Auwerx
    • 1
    • 2
  1. 1.Institut Clinique de la SourisIllkirch CedexFrance
  2. 2.Institut de Génétique et de Biologie Moléculaire et CellulaireCNRS/INSERM/Université Louis PasteurIllkirchFrance

Personalised recommendations