Mammalian Genome

, Volume 19, Issue 2, pp 106–120 | Cite as

Comparative analysis of neuropeptide cleavage sites in human, mouse, rat, and cattle

  • Allison N. Tegge
  • Bruce R. Southey
  • Jonathan V. Sweedler
  • Sandra L. Rodriguez-Zas
Article

Abstract

Neuropeptides are an important class of signaling molecules that result from complex and variable posttranslational processing of precursor proteins and thus are difficult to identify based solely on genomic information. Bioinformatics prediction of precursor cleavage sites can support effective biochemical characterization of neuropeptides. Neuropeptide cleavage models were developed using comprehensive human, mouse, rat, and cattle precursor data sets and used to compare predicted neuropeptide processing across these species. Logistic regression and artificial neural network models were used to predict cleavages based on amino acid and physiochemical properties of amino acids at precursor sequence locations proximal to cleavage. Correct cleavage classification rates across species and models ranged from 85% to 100%, suggesting that amino acid and amino acid properties have major impact on the probability of cleavage and that these factors have comparable effects in human, mouse, rat, and cattle. The variable accuracy of each species-specific model to predict cleavage sites indicated that there are species- and precursor-specific processing patterns. Prediction of mouse cleavages using rat models was highly accurate, yet the reverse was not observed. Sensitivity and specificity revealed that logistic models are well suited to maximize the rate of true noncleavage predictions with moderate rates of true cleavage predictions; meanwhile, artificial neural networks maximize the rate of true cleavage predictions with moderate to low true noncleavage predictions. Logistic models also provided insights into the strength of the amino acid associations with cleavage. Prediction of neuropeptide cleavage sites using human, mouse, rat, and cattle models are available at http://www.neuroproteomics.scs.uiuc.edu/neuropred.html.

Supplementary material

335_2007_9090_MOESM1_ESM.doc (83 kb)
(DOC 83 kb)

References

  1. Agresti A (1996) An Introduction to Categorical Data Analysis. New York: John Wiley and SonsGoogle Scholar
  2. Amare A, Hummon AB, Southey BR, Zimmerman TA, Rodriguez-Zas SL, et al. (2006) Bridging neuropeptidomics and genomics with bioinformatics: prediction of mammalian neuropeptide prohormone processing. J Proteome Res 5(5):1162–1167PubMedCrossRefGoogle Scholar
  3. Baldi P, Brunak S, Chauvin Y, Andersen CA, Nielsen H (2000) Assessing the accuracy of prediction algorithms for classification: an overview. Bioinformatics 16(5):412–424PubMedCrossRefGoogle Scholar
  4. Bendtsen JD, Nielsen H, von Heijne G, Brunak S (2004) Improved prediction of signal peptides: SignalP 3.0. J Mol Biol 340(4):783–795PubMedCrossRefGoogle Scholar
  5. Berg JM, Tymoczko JL, Stryer L (2002) Biochemistry, 5th ed. (New York: WH Freeman)Google Scholar
  6. Beinfeld MC (2003) Biosynthesis and processing of pro CCK: recent progress and future challenges. Life Sci 72(7):747–757PubMedCrossRefGoogle Scholar
  7. Dey A, Lipkind GM, Rouillé Y, Norrbom C, Stein J, et al. (2005) Significance of prohormone convertase 2, PC2, mediated initial cleavage at the proglucagon interdomain site, Lys70-Arg71, to generate glucagons. Endocrinology 146(2):713–727PubMedCrossRefGoogle Scholar
  8. Dreiseitl S, Ohno-Machado L (2002) Logistic regression and artificial neural network classification models: a methodology review. J Biomed Inform 35(5/6):352–359PubMedCrossRefGoogle Scholar
  9. Duckert P, Brunak S, Blom N (2004) Prediction of proprotein convertase cleavage sites. Protein Eng Des Sel 17(1):107–112PubMedCrossRefGoogle Scholar
  10. Francis L (2001) Neural networks demystified. Casualty actuarial society forum. Casualty Actuarial Society. Winter 2001:253–320Google Scholar
  11. Fricker LD (2005) Neuropeptide-processing enzymes: applications for drug discovery. AAPS J 7(2):E449–455PubMedCrossRefGoogle Scholar
  12. Henrich S, Cameron A, Bourenkov GP, Kiefersauer R, Huber R, et al. (2003) The crystal structure of the proprotein processing proteinase furin explains its stringent specificity. Nat Struct Biol 10(7):520–526PubMedCrossRefGoogle Scholar
  13. Hinuma S, Shintani Y, Fukusumi S, Iijima N, Matsumoto Y, et al. (2000) New neuropeptides containing carboxy-terminal RFamide and their receptor in mammals. Nat Cell Biol 2(10):703–708PubMedCrossRefGoogle Scholar
  14. Holyoak T, Wilson MA, Fenn TD, Kettner CA, Petsko GA, et al. (2003) 2.4 Å Resolution crystal structure of the prototypical hormone-processing protease Kex2 in complex with an Ala-Lys-Arg boronic acid inhibitor. Biochemistry 42(22):6709–6718PubMedCrossRefGoogle Scholar
  15. Hook VY (2006) Unique neuronal functions of cathepsin L and cathepsin B in secretory vesicles: biosynthesis of peptides in neurotransmission and neurodegenerative disease. Biol Chem 387(10–11):1429–1439PubMedCrossRefGoogle Scholar
  16. Hummon AB, Hummon NP, Corbin RW, Li LJ, Vilim FS, et al. (2003) From precursor to final peptides: a statistical sequence-based approach to predicting prohormone processing. J Proteome Res 2(6):650–656PubMedCrossRefGoogle Scholar
  17. Hummon AB, Amare A, Sweedler JV (2006) Discovering new invertebrate neuropeptides using mass spectrometry. Mass Spectrom Rev 25(1):77–98PubMedCrossRefGoogle Scholar
  18. Jiang Y, Luo L, Gustafson EL, Yadav D, Laverty M, et al. (2003) Identification and characterization of a novel RF-amide peptide ligand for orphan G-protein-coupled receptor SP9155. J Biol Chem 278(30):27652–27657PubMedCrossRefGoogle Scholar
  19. Larkin DM, Astakhova NM, Prokhorovich MA, Lewin HA, Zhdanova NS (2006) Comparative mapping of cattle chromosome 19: cytogenetic localization of 19 BAC clones. Cytogenet Genome Res 112(3–4):235–240PubMedCrossRefGoogle Scholar
  20. Matthews BW (1975) Comparison of predicted and observed secondary structure of T4 phage lysozyme. Biochim Biophys Acta 405(2):442–451PubMedGoogle Scholar
  21. Reed Murphy L, Wallqvist A, Levy RM (2000) Simplified amino acid alphabets for protein fold recognition and implications for folding. Protein Eng 13(3):149–152CrossRefGoogle Scholar
  22. Rockwell NC, Krysan DJ, Komiyama T, Fuller RS (2002) Precursor processing by kex2/furin proteases. Chem Rev 102(12):4525–4548PubMedCrossRefGoogle Scholar
  23. Scamuffa N, Calvo F, Chretien M, Seidah NG, Khatib AM (2006) Proprotein convertases: lessons from knockouts. FASEB J 20(12):1954–1963PubMedCrossRefGoogle Scholar
  24. Schechter I, Berger A (1967) On the size of the active site in proteases. I. Papain. Biochem Biophys Res Commun 27(2):157–162CrossRefGoogle Scholar
  25. Southey BR, Amare A, Zimmerman TA, Rodriguez-Zas SL, Sweedler JV (2006a) NeuroPred: a tool to predict cleavage sites in neuropeptide precursors and provide the masses of the resulting peptides. Nucleic Acids Res 34(Web Server issue):W267–272PubMedCrossRefGoogle Scholar
  26. Southey BR, Rodriguez-Zas SL, Sweedler JV (2006b) Prediction of neuropeptide prohormone cleavages with application to RFamides. Peptides 27(5):1087–1098PubMedCrossRefGoogle Scholar
  27. Tegge AN, Rodriguez-Zas SL, Sweedler JV, Southey BR (2007) Enhanced prediction of cleavage in bovine precursor sequences. In: Bioinformatics Research and Applications, Third International Symposium, ISBRA 2007, Atlanta, GA, USA, May 7–10, 2007, Proceedings, Lecture Notes in Computer Science 4463, Mandoiu I, Zelikovsky A (eds.) (New York: Springer–Verlag), pp 350–360Google Scholar
  28. The UniProt Consortium (2007) The Universal Protein Resource (UniProt). Nucleic Acids Res 35(35):D193–197CrossRefGoogle Scholar
  29. Thomas G, Thorne BA, Thomas L, Allen RG, Hruby DE, et al. (1988) Yeast KEX2 endopeptidase correctly cleaves a neuroendocrine prohormone in mammalian cells. Science 241(4862):226–230PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Allison N. Tegge
    • 1
  • Bruce R. Southey
    • 2
    • 3
  • Jonathan V. Sweedler
    • 2
    • 4
  • Sandra L. Rodriguez-Zas
    • 1
    • 4
    • 5
  1. 1.Department of Animal SciencesUniversity of IllinoisUrbanaUSA
  2. 2.Department of ChemistryUniversity of IllinoisUrbanaUSA
  3. 3.Department of Computer ScienceUniversity of IllinoisUrbanaUSA
  4. 4.Institute of Genomic BiologyUniversity of IllinoisUrbanaUSA
  5. 5.Department of StatisticsUniversity of IllinoisUrbanaUSA

Personalised recommendations