Mammalian Genome

, Volume 18, Issue 5, pp 347–360

A genetic linkage map of the vervet monkey (Chlorocebus aethiops sabaeus)

  • Anna J. Jasinska
  • Susan Service
  • Matthew Levinson
  • Erin Slaten
  • Oliver Lee
  • Eric Sobel
  • Lynn A. Fairbanks
  • Julia N. Bailey
  • Matthew J. Jorgensen
  • Sherry E. Breidenthal
  • Ken Dewar
  • Thomas J. Hudson
  • Roberta Palmour
  • Nelson B. Freimer
  • Roel A. Ophoff
Article

Abstract

The spectacular progress in genomics increasingly highlights the importance of comparative biology in biomedical research. In particular, nonhuman primates, as model systems, provide a crucial intermediate between humans and mice. The close similarities between humans and other primates are stimulating primate studies in virtually every area of biomedical research, including development, anatomy, physiology, immunology, and behavior. The vervet monkey (Chlorocebus aethiops sabaeus) is an important model for studying human diseases and complex traits, especially behavior. We have developed a vervet genetic linkage map to enable mapping complex traits in this model organism and facilitate comparative genomic analysis between vervet and other primates. Here we report construction of an initial genetic map built with about 360 human orthologous short tandem repeats (STRs) that were genotyped in 434 members of an extended vervet pedigree. The map includes 226 markers mapped in a unique order with a resolution of 9.8 Kosambi centimorgans (cM) in the vervet monkey genome, and with a total length (including all 360 markers) of 2726 cM. At least one complex and 11 simple rearrangements in marker order distinguish vervet chromosomes from human homologs. While inversions and insertions can explain a similar number of changes in marker order between vervet and rhesus homologs, mostly inversions are observed when vervet chromosome organization is compared to that in human and chimpanzee. Our results support the notion that large inversions played a less prominent role in the evolution within the group of the Old World monkeys compared to the human and chimpanzee lineages.

Supplementary material

References

  1. Bailey JN, Breidenthal SE, Jorgensen MJ, McCracken JT, Fairbanks LA (2007) The association of DRD4 and novelty seeking is found in a nonhuman primate model. Psychiatr Genet 17(1):23–27PubMedCrossRefGoogle Scholar
  2. Boles JW, Pitt ML, LeClaire RD, Gibbs PH, Torres E, et al. (2003) Generation of protective immunity by inactivated recombinant staphylococcal enterotoxin B vaccine in nonhuman primates and identification of correlates of immunity. Clin Immunol 108(1):51–59PubMedCrossRefGoogle Scholar
  3. Boehnke M (1991) Allele frequency estimation from data on relatives. Am J Hum Genet 48(1):22–25PubMedGoogle Scholar
  4. Broman KW, Murray JC, Sheffield VC, White RL, Weber JL (1998) Comprehensive human genetic maps: individual and sex-specific variation in recombination. Am J Hum Genet 63(3):861–869PubMedCrossRefGoogle Scholar
  5. Broussard SR, Staprans SI, White R, Whitehead EM, Feinberg MB, et al. (2001) Simian immunodeficiency virus replicates to high levels in naturally infected African green monkeys without inducing immunologic or neurologic disease. J Virol 75(5):2262–2275PubMedCrossRefGoogle Scholar
  6. Cox LA, Mahaney MC, Vandeberg JL, Rogers J (2006) A second-generation genetic linkage map of the baboon (Papio hamadryas) genome. Genomics 88(3):274–281PubMedCrossRefGoogle Scholar
  7. Dutrillaux B (1979) Chromosomal evolution in primates: tentative phylogeny from Microcebus murinus (Prosimian) to man. Hum Genet 48:251–314PubMedCrossRefGoogle Scholar
  8. Ellegren H, Primmer CR, Sheldon BC (1995) Microsatellite ‘evolution’: directionality or bias? Nat Genet 11(4):360–362PubMedCrossRefGoogle Scholar
  9. Elsworth JD, Deutch AY, Redmond DE Jr, Taylor JR, Sladek JR Jr, et al. (1989) Symptomatic and asymptomatic 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated primates: biochemical changes in striatal regions. Neuroscience 33(2):323–331PubMedCrossRefGoogle Scholar
  10. Fairbanks LA (2001) Individual differences in response to a stranger: social impulsivity as a dimension of temperament in vervet monkeys (Cercopithecus aethiops sabaeus). J Comp Psychol 115(1):22–28PubMedCrossRefGoogle Scholar
  11. Fairbanks LA, McGuire MT (1988) Long-term effects of early mothering behavior on responsiveness to the environment in vervet monkeys. Dev Psychobiol 21(7):711–724PubMedCrossRefGoogle Scholar
  12. Fairbanks LA, Fontenot MB, Phillips-Conroy JE, Jolly CJ, Kaplan JR, et al. (1999) CSF monoamines, age and impulsivity in wild grivet monkeys (Cercopithecus aethiops aethiops). Brain Behav Evol 53(5–6):305–312PubMedCrossRefGoogle Scholar
  13. Fairbanks LA, Melega WP, Jorgensen MJ, Kaplan JR, McGuire MT (2001) Social impulsivity inversely associated with CSF 5-HIAA and fluoxetine exposure in vervet monkeys. Neuropsychopharmacology 24(4):370–378PubMedCrossRefGoogle Scholar
  14. Fairbanks LA, Jorgensen MJ, Huff A, Blau K, Hung YY, et al. (2004) Adolescent impulsivity predicts adult dominance attainment in male vervet monkeys. Am J Primatol 64(1):1–17PubMedCrossRefGoogle Scholar
  15. Falk CT (1989) A simple scheme for preliminary ordering of multiple loci: application to 45 CF families. Prog Clin Biol Res 329:17–22PubMedGoogle Scholar
  16. Finelli P, Stanyon R, Plesker R, Ferguson-Smith MA, O’Brien PC, et al. (1999) Reciprocal chromosome painting shows that the great difference in diploid number between human and African green monkey is mostly due to non-Robertsonian fissions. Mamm Genome 10(7):713–718PubMedCrossRefGoogle Scholar
  17. Goldstein S, Ourmanov I, Brown CR, Beer BE, Elkins WR, et al. (2000) Wide range of viral load in healthy African green monkeys naturally infected with simian immunodeficiency virus. J Virol 74(24):11744–11753PubMedCrossRefGoogle Scholar
  18. Goldstein S, Brown CR, Ourmanov I, Pandrea I, Buckler-White A, et al. (2006) Comparison of simian immunodeficiency virus SIVagmVer replication and CD4+ T-cell dynamics in vervet and sabaeus African green monkeys. J Virol 80(10):4868–4877PubMedCrossRefGoogle Scholar
  19. Gray WL, Mullis L, Soike KF (2002) Viral gene expression during acute simian varicella virus infection. J Gen Virol 83(Pt 4):841–846PubMedGoogle Scholar
  20. Harvey DC, Lacan G, Melegan WP (2000) Regional heterogeneity of dopaminergic deficits in vervet monkey striatum and substantia nigra after methamphetamine exposure. Exp Brain Res 133(3):349–358PubMedCrossRefGoogle Scholar
  21. Hinrichs AS, Karolchik D, Baertsch R, Barber GP, Bejerano G, et al. (2006) The UCSC Genome Browser Database: update 2006. Nucleic Acids Res 34(Database issue):D590–D598PubMedCrossRefGoogle Scholar
  22. Hirsch VM, Dapolito G, Johnson PR, Elkins WR, London WT, et al. (1995) Induction of AIDS by simian immunodeficiency virus from an African green monkey: species-specific variation in pathogenicity correlates with the extent of in vivo replication. J Virol 69(2):955–967PubMedGoogle Scholar
  23. Jentsch JD, Taylor JR, Elsworth JD, Redmond DE Jr, Roth RH (1999) Altered frontal cortical dopaminergic transmission in monkeys after subchronic phencyclidine exposure: involvement in frontostriatal cognitive deficits. Neuroscience 90(3):823–832PubMedCrossRefGoogle Scholar
  24. Joy A, Vogelnest L, Middleton DJ, Dale CJ, Campagna D, et al. (2001) Simian immunodeficiency virus infections in vervet monkeys (Clorocebus aethiops) at an Australian zoo. Aust Vet J 79(6):406–408PubMedGoogle Scholar
  25. Kavanagh K, Fairbanks L, Bailey JN, Wilson M, et al. (2007) Characterization and heritability of obesity and associated risk factors in vervet monkeys. Obesity Res (in press)Google Scholar
  26. Kehrer-Sawatzki H, Sandig C, Chuzhanova N, Goidts V, Szamalek JM, et al. (2005) Breakpoint analysis of the pericentric inversion distinguishing human chromosome 4 from the homologous chromosome in the chimpanzee (Pan troglodytes). Hum Mutat 25(1):45–55PubMedCrossRefGoogle Scholar
  27. Kong X, Murphy K, Raj T, He C, White PS, et al. (2004) A combined linkage-physical map of the human genome. Am J Hum Genet 75(6):1143–1148PubMedCrossRefGoogle Scholar
  28. Lange K, Cantor R, Horvath S, Perola M, Sabatti C, et al. (2001) Mendel version 4.0: A complete package for the exact genetic analysis of discrete traits in pedigree and population data sets. Am J Hum Genet 69:A1886Google Scholar
  29. Lemere CA, Beierschmitt A, Iglesias M, Spooner ET, Bloom JK, et al. (2004) Alzheimer’s disease abeta vaccine reduces central nervous system abeta levels in a non-human primate, the Caribbean vervet. Am J Pathol 165(1):283–297PubMedGoogle Scholar
  30. Marzella R, Viggiano L, Miolla V, Storlazzi CT, Ricco A, Gentile E, Roberto R, Surace C, Fratello A, Mancini M, Archidiacono N, Rocchi M (2000) Molecular cytogenetic resources for chromosome 4 and comparative analysis of phylogenetic chromosome IV in great apes. Genomics 63:307–313PubMedCrossRefGoogle Scholar
  31. Matise TC, Perlin M, Chakravarti A (1994) Automated construction of genetic linkage maps using an expert system (MultiMap): a human genome linkage map. Nat Genet 6(4):384–390PubMedCrossRefGoogle Scholar
  32. Mukhopadhyay N, Almasy L, Schroeder M, Mulvihill WP, Weeks DE (2005) Mega2: data-handling for facilitating genetic linkage and association analyses. Bioinformatics 21(10):2556–2557PubMedCrossRefGoogle Scholar
  33. Muller S, Stanyon R, Finelli P, Archidiacono N, Wienberg J (2000) Molecular cytogenetic dissection of human chromosomes 3 and 21 evolution. Proc Natl Acad Sci U S A 97(1):206–211PubMedCrossRefGoogle Scholar
  34. Muller S, Finelli P, Neusser M, Wienberg J (2004) The evolutionary history of human chromosome 7. Genomics 84(3):458–467PubMedCrossRefGoogle Scholar
  35. Murphy WJ, Agarwala R, Schaffer AA, Stephens R, Smith C Jr, et al. (2005) A rhesus macaque radiation hybrid map and comparative analysis with the human genome. Genomics 86(4):383–395PubMedCrossRefGoogle Scholar
  36. O’Connell JR, Weeks DE (1998) PedCheck: a program for identification of genotype incompatibilities in linkage analysis. Am J Hum Genet 63(1):259–266PubMedCrossRefGoogle Scholar
  37. Olobo JO, Gicheru MM, Anjili CO (2001) The African Green Monkey model for cutaneous and visceral leishmaniasis. Trends Parasitol 17(12):588–592PubMedCrossRefGoogle Scholar
  38. Palmour RM, Ervin FR, Baker GB, Young SN (1998) An amino acid mixture deficient in phenylalanine and tyrosine reduces cerebrospinal fluid catecholamine metabolites and alcohol consumption in vervet monkeys. Psychopharmacology (Berl) 136(1):1–7CrossRefGoogle Scholar
  39. Raz A, Frechter-Mazar V, Feingold A, Abeles M, Vaadia E, et al. (2001) Activity of pallidal and striatal tonically active neurons is correlated in mptp-treated monkeys but not in normal monkeys. J Neurosci 21(3):RC128PubMedGoogle Scholar
  40. Rogers J, Mahaney MC, Witte SM, Nair S, Newman D, et al. (2000) A genetic linkage map of the baboon (Papio hamadryas) genome based on human microsatellite polymorphisms. Genomics 67(3):237–247PubMedCrossRefGoogle Scholar
  41. Rogers J, Garcia R, Shelledy W, Kaplan J, Arya A, et al. (2006) An initial genetic linkage map of the rhesus macaque (Macaca mulatta) genome using human microsatellite loci. Genomics 87(1):30–38PubMedCrossRefGoogle Scholar
  42. Rudel LL, Haines J, Sawyer JK, Shah R, Wilson MS, et al. (1997) Hepatic origin of cholesteryl oleate in coronary artery atherosclerosis in African green monkeys. Enrichment by dietary monounsaturated fat. J Clin Invest 100(1):74–83PubMedCrossRefGoogle Scholar
  43. Szamalek JM, Goidts V, Chuzhanova N, Hameister H, Cooper DN, et al. (2005) Molecular characterisation of the pericentric inversion that distinguishes human chromosome 5 from the homologous chimpanzee chromosome. Hum Genet 117(2–3):168–176PubMedCrossRefGoogle Scholar
  44. Taylor JR, Elsworth JD, Roth RH, Sladek JR Jr, Redmond DE Jr (1997) Severe long-term 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced parkinsonism in the vervet monkey (Cercopithecus aethiops sabaeus). Neuroscience 81(3):745–755PubMedCrossRefGoogle Scholar
  45. Traina-Dorge V, Blanchard J, Martin L, Murphey-Corb M (1992) Immunodeficiency and lymphoproliferative disease in an African green monkey dually infected with SIV and STLV-I. AIDS Res Hum Retroviruses 8(1):97–100PubMedCrossRefGoogle Scholar
  46. van Jaarsveld PJ, Smuts CM, Benade AS (2002) Effect of palm olein oil in a moderate-fat diet on plasma lipoprotein profile and aortic atherosclerosis in non-human primates. Asia Pac J Clin Nutr 11 Suppl 7:S424–S432CrossRefGoogle Scholar
  47. Ventura M, Weigl S, Carbone L, Cardone MF, Misceo D, et al. (2004) Recurrent sites for new centromere seeding. Genome Res 14(9):1696–1703PubMedCrossRefGoogle Scholar
  48. Yunis JJ, Prakash O (1982) The origin of man: a chromosomal pictorial legacy. Science 215(4539):1525–1530PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Anna J. Jasinska
    • 1
  • Susan Service
    • 1
  • Matthew Levinson
    • 1
  • Erin Slaten
    • 1
  • Oliver Lee
    • 1
  • Eric Sobel
    • 2
  • Lynn A. Fairbanks
    • 3
    • 4
  • Julia N. Bailey
    • 3
  • Matthew J. Jorgensen
    • 3
  • Sherry E. Breidenthal
    • 3
  • Ken Dewar
    • 5
  • Thomas J. Hudson
    • 5
    • 6
  • Roberta Palmour
    • 7
  • Nelson B. Freimer
    • 1
    • 9
  • Roel A. Ophoff
    • 1
    • 2
    • 4
    • 8
  1. 1.Center for Neurobehavioral GeneticsThe Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of CaliforniaLos AngelesUSA
  2. 2.Department of Human GeneticsUniversity of CaliforniaLos AngelesUSA
  3. 3.Center for Primate NeuroethologyThe Jane and Terry Semel Institute for Neuroscience and Human Behavior University of CaliforniaLos AngelesUSA
  4. 4.Department of Psychiatry and Biobehavioral SciencesUniversity of CaliforniaLos AngelesUSA
  5. 5.Research Institute of McGill University Health Centre, McGill University and Genome Québec Innovation Centre, and Departments of Human Genetics and Experimental MedicineMcGill UniversityMontréalCanada
  6. 6.Ontario Institute for Cancer ResearchTorontoCanada
  7. 7.Departments of Psychiatry and Human GeneticsMcGill University, MontréalQuébecCanada
  8. 8.Department of Medical Genetics and Rudolf Magnus InstituteUniversity Medical Center UtrechtUniversiteitsweg 100The Netherlands
  9. 9.UCLA Center for Neurobehavioral GeneticsGonda CenterLos AngelesUSA

Personalised recommendations