Mammalian Genome

, Volume 17, Issue 6, pp 480–489

Integrated gene expression profiling and linkage analysis in the rat

  • Enrico Petretto
  • Jonathan Mangion
  • Michal Pravanec
  • Norbert Hubner
  • Timothy J. Aitman
Article

Abstract

The combined application of genome-wide expression profiling from microarray experiments with genetic linkage analysis enables the mapping of expression quantitative trait loci (eQTLs) which are primary control points for gene expression across the genome. This approach allows for the dissection of primary and secondary genetic determinants of gene expression. The cis-acting eQTLs in practice are easier to investigate than the trans-regulated eQTLs because they are under simpler genetic control and are likely to be due to sequence variants within the gene itself or its neighboring regulatory elements. These genes are therefore candidates both for variation in gene expression and for contributions to whole-body phenotypes, particularly when these are located within known and relevant physiologic QTLs. Multiple trans-acting eQTLs tend to cluster to the same genetic location, implying shared regulatory control mechanisms that may be amenable to network analysis to identify gene clusters within the same metabolic pathway. Such clusters may ultimately underlie development of individual complex, whole-body phenotypes. The combined expression and linkage approach has been applied successfully in several mammalian species, including the rat which has specific features that demonstrate its value as a model for studying complex traits.

References

  1. Aitman TJ, Glazier AM, Wallace CA, Cooper LD, Norsworthy PJ, et al. (1999) Identification of Cd36 (fat) as an insulin-resistance gene causing defective fatty acid and glucose metabolism in hypertensive rats. Nat Genet 21: 76–83PubMedCrossRefGoogle Scholar
  2. Aitman TJ, Dong R, Vyse TJ, Norsworthy PJ, Johnson MD, et al. (2006) Copy number polymorphism in Fcgr3 predisposes to glomerulonephritis in rats and humans. Nature 439: 851–855PubMedCrossRefGoogle Scholar
  3. Belknap JK (1998) Effect of within-strain sample size on QTL detection and mapping using recombinant inbred mouse strains. Behav Genet 28: 29–38PubMedCrossRefGoogle Scholar
  4. Benjamini Y, Yekutieli D (2005) Quantitative trait loci analysis using the false discovery rate. Genetics 171: 783–790PubMedCrossRefGoogle Scholar
  5. Broman KW (2005) The genomes of recombinant inbred lines. Genetics 169: 1133–1146PubMedCrossRefGoogle Scholar
  6. Bystrykh L, Weersing E, Dontje B, Sutton S, Pletcher MT, et al. (2005) Uncovering regulatory pathways that affect hematopoietic stem cell function using “genetical genomics.” Nat Genet 37: 225–232PubMedCrossRefGoogle Scholar
  7. Cenci MA, Whishaw IQ, Schallert T (2002) Animal models of neurological deficits: how relevant is the rat? Nat Rev Neurosci 3: 574–579PubMedCrossRefGoogle Scholar
  8. Chesler EJ, Lu L, Wang J, Williams RW, Manly KF (2004) WebQTL: Rapid exploratory analysis of gene expression and genetic networks for brain and behavior. Nat Neurosci 7: 485–486PubMedCrossRefGoogle Scholar
  9. Chesler EJ, Lu L, Shou S, Qu Y, Gu J, Wang J, et al. (2005) Complex trait analysis of gene expression uncovers polygenic and pleiotropic networks that modulate nervous system function. Nat Genet 37: 233–242PubMedCrossRefGoogle Scholar
  10. Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative trait mapping. Genetics 138: 963–971PubMedGoogle Scholar
  11. Crackower MA, Sarao R, Oudit GY, Yagil C, Kozieradzki I, et al. (2002) Angiotensin-converting enzyme 2 is an essential regulator of heart function. Nature 417: 822–828PubMedCrossRefGoogle Scholar
  12. Crusio WE (2004) A note on the effect of within-strain sample sizes on QTL mapping in recombinant inbred strain studies. Genes Brain Behav 3: 249–251PubMedCrossRefGoogle Scholar
  13. Damerval C, Maurice A, Josse JM, de Vienne D (1994) Quantitative trait loci underlying gene product variation: a novel perspective for analyzing regulation of genome expression. Genetics 137: 289–301PubMedGoogle Scholar
  14. de Koning DJ, Haley CS (2005) Genetical genomics in humans and model organisms. Trends Genet 21: 377–381PubMedCrossRefGoogle Scholar
  15. Dumas P, Sun Y, Corbeil G, Tremblay S, Pausova Z, et al. (2000) Mapping of quantitative trait loci (qtl) of differential stress gene expression in rat recombinant inbred strains. J Hypertens 18: 545–551PubMedGoogle Scholar
  16. Flint J, Valdar W, Shifman S, Mott R (2005) Strategies for mapping and cloning quantitative trait genes in rodents. Nat Rev Genet 6: 271–286PubMedCrossRefGoogle Scholar
  17. Frantz S, Clemitson JR, Bihoreau MT, Gauguier D, Samani NJ (2001) Genetic dissection of region around the Sa gene on rat chromosome 1: evidence for multiple loci affecting blood pressure. Hypertension 38: 216–221PubMedGoogle Scholar
  18. Garrett MR, Meng H, Rapp JP, Joe B (2005) Locating a blood pressure quantitative trait locus within 117 kb on the rat genome: substitution mapping and renal expression analysis. Hypertension 45: 451–459PubMedCrossRefGoogle Scholar
  19. Gibbs RA, Weinstock GM, Metzker ML, Muzny DM, Sodergren EJ, et al. (2004) Genome sequence of the Brown Norway rat yields insights into mammalian evolution. Nature 428: 493–521PubMedCrossRefGoogle Scholar
  20. Glazier AM, Nadeau JH, Aitman TJ (2002) Finding genes that underlie complex traits. Science 298: 2345–2349PubMedCrossRefGoogle Scholar
  21. Holmdahl R, Lorentzen JC, Lu S, Olofsson P, Wester L, et al. (2001) Arthritis induced in rats with nonimmunogenic adjuvants as models for rheumatoid arthritis. Immunol Rev 184: 184–202PubMedCrossRefGoogle Scholar
  22. Hubner N, Wallace CA, Zimdahl H, Petretto E, Schulz H, et al. (2005) Integrated transcriptional profiling and linkage analysis for identification of genes underlying disease. Nat Genet 37: 243–253PubMedCrossRefGoogle Scholar
  23. Janse MJ, Opthof T, Kleber AG (1998) Animal models of cardiac arrhythmias. Cardiovasc Res 39: 165–177PubMedCrossRefGoogle Scholar
  24. Jansen RC, Nap JP (2001) Genetical genomics: the added value from segregation. Trends Genet 17: 388–391PubMedCrossRefGoogle Scholar
  25. Karp CL, Grupe A, Schadt E, Ewart SL, Keane–Moore M, et al. (2000) Identification of complement factor 5 as a susceptibility locus for experimental allergic asthma. Nat Immunol 1: 221–226PubMedCrossRefGoogle Scholar
  26. Knott SA, Haley CS (2000) Multitrait least squares for quantitative trait loci detection. Genetics 156: 899–911PubMedGoogle Scholar
  27. Lawn RM, Wade DP, Garvin MR, Wang X, Schwartz K, et al. (1999) The Tangier disease gene product ABC1 controls the cellular apolipoprotein-mediated lipid removal pathway. J Clin Invest 104: R25–R31PubMedGoogle Scholar
  28. Lepretre F, Linton KJ, Lacquemant C, Vatin V, Samson C, et al. (2004) Genetic study of the CD36 gene in a French diabetic population. Diabetes Metab 30: 459–463PubMedGoogle Scholar
  29. Li H, Lu L, Manly KF, Chesler EJ, Bao L, et al. (2005) Inferring Gene transcriptional modulatory relations: a genetical genomics approach. Hum Mol Genet 14: 1119–1125PubMedCrossRefGoogle Scholar
  30. Manly KF, Nettleton D, Hwang JT (2004) Genomics, prior probability, and statistical tests of multiple hypotheses. Genome Res 14: 997–1001PubMedCrossRefGoogle Scholar
  31. Miyaoka K, Kuwasako T, Hirano K, Nozaki S, Yamashita S, et al. (2001) CD36 deficiency associated with insulin resistance. Lancet 357: 686–687PubMedCrossRefGoogle Scholar
  32. Moujahidine M, Lambert R, Dutil J, Palijan A, Sivo Z, et al. (2004) Combining congenic coverage with gene profiling in search of candidates for blood pressure quantitative trait loci in Dahl rats. Hypertens Res 27: 203–212PubMedCrossRefGoogle Scholar
  33. Mueller M, Goel A, Thimma M, Dickens NJ, Aitman TJ, et al. (2006) EQTL Explorer: integrated mining of combined genetic linkage and expression experiments. Bioinformatics 22: 509–511PubMedCrossRefGoogle Scholar
  34. Okuda T, Sumiya T, Mizutani K, Tago N, Miyata T, et al. (2002) Analyses of differential gene expression in genetic hypertensive rats by microarray. Hypertens Res 25: 249–255PubMedCrossRefGoogle Scholar
  35. Pravenec M, Klir P, Kren V, Zicha J, Kunes J (1989) An analysis of spontaneous hypertension in spontaneously hypertensive rats by means of new recombinant inbred strains. J Hypertens 7: 217–221PubMedGoogle Scholar
  36. Pravenec M, Wallace C, Aitman TJ, Kurtz TW (2003) Gene expression profiling in hypertension research: a critical perspective. Hypertension 41: 3–8PubMedCrossRefGoogle Scholar
  37. Pravenec M, Zidek V, Landa V, Simakova M, Mlejnek P, et al. (2004) Genetic analysis of “metabolic syndrome” in the spontaneously hypertensive rat. Physiol Res 153 Suppl : S15–S22Google Scholar
  38. Samani NJ, Lodwick D, Vincent M, Dubay C, Kaiser MA, et al. (1993) A gene differentially expressed in the kidney of the spontaneously hypertensive rat cosegregates with increased blood pressure. J Clin Invest 92: 1099–1103PubMedCrossRefGoogle Scholar
  39. Schadt EE, Monks SA, Drake TA, Lusis AJ, Che N, et al. (2003) Genetics of gene expression surveyed in maize, mouse and man. Nature 422: 297–302PubMedCrossRefGoogle Scholar
  40. Spence J, Liang T, Foroud T, Lo D, Carr L (2005) Expression profiling and QTL analysis: a powerful complementary strategy in drug abuse research. Addict Biol 10: 47–51PubMedCrossRefGoogle Scholar
  41. Storey JD, Taylor JE, Siegmund D (2004) Strong control, conservative point estimation, and simultaneous conservative consistency of false discovery rates: a unified approach. J R Stat Soc B 66: 187–205CrossRefGoogle Scholar
  42. Storey JD, Tibshirani R (2003) Statistical significance for genomewide studies. Proc Natl Acad Sci USA 100: 9440–9445PubMedCrossRefGoogle Scholar
  43. Wang J, Williams RW, Manly KF (2003) WebQTL: web-based complex trait analysis. Neuroinformatics 1: 299–308PubMedCrossRefGoogle Scholar
  44. Yagil C, Hubner N, Monti J, Schulz H, Sapojnikov M, et al. (2005) Identification of hypertension-related genes through an integrated genomic-transcriptomic approach. Circ Res 96: 617–625PubMedCrossRefGoogle Scholar
  45. Yamashita S, Wakazono K, Nomoto T, Tsujino Y, Kuramoto T, et al. (2005) Expression quantitative trait loci analysis of 13 genes in the rat prostate. Genetics 171: 1231–1238PubMedCrossRefGoogle Scholar
  46. Yvert G, Brem RB, Whittle J, Akey JM, Foss E, et al. (2003) Trans-acting regulatory variation in Saccharomyces cerevisiae and the role of transcription factors. Nat Genet 35: 57–64PubMedCrossRefGoogle Scholar
  47. Zhou Q, Renard JP, Le Friec G, Brochard V, Beaujean N, et al. (2003) Generation of fertile cloned rats by regulating oocyte activation. Science 302: 1179PubMedCrossRefGoogle Scholar
  48. Zimdahl H, Nyakatura G, Brandt P, Schulz H, Hummel O, et al. (2004) A SNP map of the rat genome generated from cDNA sequences. Science 303: 807PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Enrico Petretto
    • 1
  • Jonathan Mangion
    • 1
  • Michal Pravanec
    • 2
    • 3
  • Norbert Hubner
    • 4
  • Timothy J. Aitman
    • 1
  1. 1.MRC Clinical Sciences CentreFaculty of MedicineLondonUnited Kingdom
  2. 2.Institute of PhysiologyCzech Academy of Sciences and Centre for Applied GenomicsPrague 4Czech Republic
  3. 3.Institute of Biology and Medical GeneticsCharles UniversityPrague 2Czech Republic
  4. 4.Max-Delbrück-Center for Molecular MedicineBerlin-BuchGermany

Personalised recommendations