Mammalian Genome

, Volume 17, Issue 1, pp 58–66 | Cite as

The mutation causing the black-and-tan pigmentation phenotype of Mangalitza pigs maps to the porcine ASIP locus but does not affect its coding sequence

  • Cord Drögemüller
  • Alexander Giese
  • Flávia Martins-Wess
  • Sabine Wiedemann
  • Leif Andersson
  • Bertram Brenig
  • Ruedi Fries
  • Tosso Leeb
Original Contributions

Abstract

The gene for agouti signaling protein (ASIP) is centrally involved in the expression of coat color traits in animals. The Mangalitza pig breed is characterized by a black-and-tan phenotype with black dorsal pigmentation and yellow or white ventral pigmentation. We investigated a Mangalitza × Piétrain cross and observed a coat color segregation pattern in the F2 generation that can be explained by virtue of two alleles at the MC1R locus and two alleles at the ASIP locus. Complete linkage of the black-and-tan phenotype to microsatellite alleles at the ASIP locus on SSC 17q21 was observed. Corroborated by the knowledge of similar mouse coat color mutants, it seems therefore conceivable that the black-and-tan pigmentation of Mangalitza pigs is caused by an ASIP allele at, which is recessive to the wild-type allele A. Toward positional cloning of the at mutation, a 200-kb genomic BAC/PAC contig of this chromosomal region has been constructed and subsequently sequenced. Full-length ASIP cDNAs obtained by RACE differed in their 5′ untranslated regions, whereas they shared a common open reading frame. Comparative sequencing of all ASIP exons and ASIP cDNAs between Mangalitza and Piétrain pigs did not reveal any differences associated with the coat color phenotype. Relative qRT-PCR analyses showed different dorsoventral skin expression intensities of the five ASIP transcripts in black-and-tan Mangalitza. The at mutation is therefore probably a regulatory ASIP mutation that alters its dorsoventral expression pattern.

References

  1. Abecasis GR, Cherny SS, Cookson WO, Cardon LR (2002) Merlin—rapid analysis of dense genetic maps using sparse gene flow trees. Nature Genet 30: 97–101PubMedCrossRefGoogle Scholar
  2. Al-Bayati H, Duscher S, Kollers S, Rettenberger G, Fries R, et al. (1999) Construction and characterization of a porcine P1-derived artificial chromosome (PAC) library covering 3.2 genome equivalents and cytogenetical assignment of six type I and type II loci. Mamm Genome 10: 569–572PubMedCrossRefGoogle Scholar
  3. Bultman SJ, Michaud EJ, Woychik RP (1992) Molecular characterization of the mouse agouti locus. Cell 71: 1195–1204PubMedCrossRefGoogle Scholar
  4. Bultman SJ, Klebig ML, Michaud EJ, Sweet HO, Davisson MT, et al. (1994) Molecular analysis of reverse mutations from nonagouti (a) to black-and-tan (at) and white-bellied agouti (Aw) reveals alternative forms of agouti transcripts. Genes Dev 8: 481–490PubMedGoogle Scholar
  5. Candille SI, Van Raamsdonk CD, Chen C, Kuijper S, Chen-Tsai Y, et al. (2004) Dorsoventral patterning of the mouse coat by Tbx15. PLoS Biol 2: E3PubMedCrossRefGoogle Scholar
  6. Carroll L, Voisey J, van Daal A (2004) Mouse models of obesity. Clin Dermatol 22: 345–349PubMedGoogle Scholar
  7. Chen Y, Duhl DM, Barsh GS (1996) Opposite orientations of an inverted duplication and allelic variation at the mouse agouti locus. Genetics 144: 265–277PubMedGoogle Scholar
  8. Ellegren H, Chowdhary BP, Johansson M, Marklund L, Fredholm M, et al. (1994) A primary linkage map of the porcine genome reveals a low rate of genetic recombination. Genetics 137: 1089–1100PubMedGoogle Scholar
  9. Girardot M, Martin J, Guibert S, Leveziel H, Julien R, et al. (2005) Widespread expression of the bovine Agouti gene results from at least three alternative promoters. Pigment Cell Res 18: 34–41PubMedCrossRefGoogle Scholar
  10. Harris RB, Mitchell TD, Mynatt RL (2002) Leptin responsiveness in mice that ectopically express agouti protein. Physiol Behav 75: 159–167PubMedCrossRefGoogle Scholar
  11. Huszar D, Lynch CA, Fairchild-Huntress V, Dunmore JH, Fang Q, et al. (1997) Targeted disruption of the melanocortin-4 receptor results in obesity in mice. Cell 88: 131–141PubMedCrossRefGoogle Scholar
  12. Kerns JA, Newton J, Berryere TG, Rubin EM, Cheng JF, et al. (2004) Characterization of the dog Agouti gene and a nonagoutimutation in German Shepherd Dogs. Mamm Genome 15: 798–808PubMedCrossRefGoogle Scholar
  13. Kijas JMH, Törnsten A, Chowdhary B, Andersson L (1998a) Porcine agouti gene map position SSC 17q21. Chromosome Res 6: 243CrossRefGoogle Scholar
  14. Kijas JMH, Wales R, Törnsten A, Chardon P, Moller M, et al. (1998b) Melanocortin receptor 1 (MC1R) mutations and coat color in pigs. Genetics 150: 1177–1185Google Scholar
  15. Kijas JMH, Moller M, Plastow G, Andersson L (2001) A frameshift mutation in MC1R and a high frequency of somatic reversions cause black spotting in pigs. Genetics 158: 779–785PubMedGoogle Scholar
  16. Kwon HY, Bultman SJ, Loffler C, Chen WJ, Furdon PJ, et al. (1994) Molecular structure and chromosomal mapping of the human homolog of the agouti gene. Proc Natl Acad Sci U S A 91: 9760–9764PubMedGoogle Scholar
  17. Leeb T, Rohrer GA (2002) Characterization and chromosome assignment of the porcine AHCY gene for S-adenosylhomocysteine hydrolase. Cytogenet Genome Res 97: 116–119PubMedCrossRefGoogle Scholar
  18. Leeb T, Deppe A, Kriegesmann B, Brenig B (2000) Genomic structure and nucleotide polymorphisms of the porcine agouti signalling protein gene (ASIP). Anim Genet 31: 335–336PubMedGoogle Scholar
  19. Lu D, Willard D, Patel IR, Kadwell S, Overton L, et al. (1994) Agouti protein is an antagonist of the melanocyte-stimulating-hormone receptor. Nature 371: 799–802PubMedGoogle Scholar
  20. Martins-Wess F, Voß–Nemitz R, Drögemüller C, Brenig B, Leeb T (2002) Construction of a 1.2-Mb BAC/PAC Contig of the porcine gene RYR1 Region on SSC 6q1.2 and comparative analysis with HSA 19q13.13. Genomics 80: 416–422PubMedCrossRefGoogle Scholar
  21. Millar SE, Miller MW, Stevens ME, Barsh GS (1995) Expression and transgenic studies of the mouse agouti gene provide insight into the mechanisms by which mammalian coat color patterns are generated. Development 121: 3223–3232PubMedGoogle Scholar
  22. Silvers WK, Russel ES (1955) An experimental approach to action of genes at the agouti locus in mouse. J Exp Zool 130: 199–220CrossRefGoogle Scholar
  23. 23.Siracusa LD (1994) The agouti gene: turned on to yellow. Trends Genet 10, 423–428PubMedCrossRefGoogle Scholar
  24. Vage DI, Lu D, Klungland H, Lien S, Adalsteinsson S, et al. (1997) A non-epistatic interaction of agouti and extension in the fox, Vulpes vulpes. Nat Genet 15: 311–315PubMedGoogle Scholar
  25. Vrieling H, Duhl DM, Millar SE, Miller KA, Barsh GS (1994) Differences in dorsal and ventral pigmentation result from regional expression of the mouse agouti gene. Proc Natl Acad Sci U S A 91: 5667–5671PubMedGoogle Scholar
  26. Wiedemann S, Kijas J, Andersson L, Fries R (2000) Genetic mapping of agouti in a Mangalitza x Piétrain cross. Proceedings of the 27th International Conference on Animal Genetics, Minnesota, July 22–26, 2000 , B060, 37Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Cord Drögemüller
    • 1
    • 2
  • Alexander Giese
    • 1
  • Flávia Martins-Wess
    • 1
  • Sabine Wiedemann
    • 3
  • Leif Andersson
    • 4
  • Bertram Brenig
    • 5
  • Ruedi Fries
    • 3
  • Tosso Leeb
    • 1
    • 2
  1. 1.Institute of Animal Breeding and GeneticsUniversity of Veterinary Medicine HannoverGermany
  2. 2.Institute of Genetics, Vetsuisse FacultyUniversity of BerneSwitzerland
  3. 3.Chair of Animal Breeding and Molecular GeneticsTechnical University of MunichGermany
  4. 4.Swedish University of Agricultural SciencesUppsalaSweden
  5. 5.Institute of Veterinary MedicineUniversity of GöttingenGermany

Personalised recommendations