Skip to main content
Log in

A paternally imprinted QTL for mature body mass on mouse Chromosome 8

  • Published:
Mammalian Genome Aims and scope Submit manuscript

Abstract

Body mass (BM) is a classic polygenic trait that has been extensively investigated to determine the underlying genetic architecture. Many previous studies looking at the genetic basis of variation in BM in murine animal models by quantitative trait loci (QTL) mapping have used crosses between two inbred lines. As a consequence it has not been possible to explore imprinting effects which have been shown to play an important role in the genetic basis of early growth with persistent effects throughout the growth curve. Here we use partially inbred mouse lines to identify QTL for mature BM by applying both Mendelian and Imprinting models. The analysis of an F2 population (n ≈ 500) identified a number of QTL at 14, 16, and 18 weeks explaining in total 31.5%, 34.4%, and 30.5% of total phenotypic variation, respectively. On Chromosome 8 a QTL of large effect (14% of the total phenotypic variance at 14 weeks) was found to be explained by paternal imprinting. Although Chromosome 8 has not been previously associated with imprinting effects, features of candidate genes within the QTL confidence interval (CpG islands and direct clustered repeats) support the hypothesis that Insulin receptor substrate 2 may be associated with imprinting, but as yet is unidentified as being so.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Anunciado RVP, Nishimura M, Mori M, Ishikawa A, Tanaka S, et al. (2001) Quantitative trait loci for body weight in the intercross between SM/J and A/J mice. Exp Anim 50:319–324

    Article  PubMed  Google Scholar 

  • Beechey CV, Cattanach BM, Blake A, Peters J (2005) MRC Mammalian Genetics Unit, Harwell, Oxfordshire. Genetic and Physical Imprinting Map of the Mouse, available at: http://www.mgu.har.mrc.ac.uk/research/imprinting/

  • Brockmann GA, Haley CS, Renne U, Knott SA, Schwerin M (1998) Quantitative trait loci affecting body weight and fatness from a mouse line selected for extreme high growth. Genetics 150:369–381

    PubMed  Google Scholar 

  • Brockmann GA, Kratzsch J, Haley CS, Renne U, Schwerin M, et al. (2000) Single QTL effects, epistasis, and pleiotropy account for two-thirds of the phenotypic F-2 variance of growth and obesity in DIU6i × DBA/2 mice. Genet Res 10:1941–1957

    Google Scholar 

  • Bunger L, MacLeod MG, Wallace CA, Hill WG (1998a) Direct and correlated effects of selection for food intake corrected for body weight in the adult mouse. Proc 6th World Cong Genet Appl Livestock Product 26:97–100

    Google Scholar 

  • Bunger L, Renne U, Dietl G, Kuhla S (1998b) Long-term selection for protein amount over 70 generations in mice. Genet Res 72:93–109

    Article  Google Scholar 

  • Cheverud JM, Rutledge JJ, Atchley WR (1983) Quantitative genetics of development - genetic correlations among age-specific trait values and the evolution of ontogeny. Evolution 37:895–905

    Google Scholar 

  • Cheverud JM, Routman EJ, Duarte FAM, van Swinderen B, Cothran K, et al. (1996) Quantitative trait loci for murine growth. Genetics 142:1305–1319

    PubMed  Google Scholar 

  • Christians JK, Rance KA, Knott SA, Pignatelli PM, Oliver F, et al. (2004) Identification of reciprocal introgression of a QTL affecting body mass in mice. Genet Select Evol 36:577–591

    Article  Google Scholar 

  • Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative trait mapping. Genetics 138:963–971

    PubMed  Google Scholar 

  • Coleman DL, Eicher EM (1990) Fat (Fat) and tubby (Tub)—2 autosomal recessive mutations causing obesity syndromes in the mouse. J Hered 81:424–427

    PubMed  Google Scholar 

  • Corva PM, Horvat S, Medrano JF (2001) Quantitative trait loci affecting growth in high growth (Hg) mice. Mammal Genome 12:284–290

    Article  Google Scholar 

  • De Koning DJ, Rattink AP, Harlizius B, Van Arendonk JAM, Brascamp EW, et al. (2000) Genome-wide scan for body composition in pigs reveals important role of imprinting. Proc Natl Acad Sci U S A 97:7947–7950

    Article  PubMed  Google Scholar 

  • De Koning DJ, Bovenhuis H, Van Arendonk JAM (2002) On the detection of imprinted quantitative trait loci in experimental crosses of outbred species. Genetics 161:931–938

    PubMed  Google Scholar 

  • Deng HW, Deng HY, Liu YJ, Liu YZ, Xu FH, et al. (2002) A genomewide linkage scan for quantitative-trait loci for obesity phenotypes. Am J Hum Genet 70:1138–1151

    Article  PubMed  Google Scholar 

  • Doolittle DP, Davisson MT, Guidi JN, Green MC (1996) Catalog of mutant genes and polymorphic loci. In Lyon MF, Rastan S, Brown SDM (eds.) Genetic Variants and Strains of the Laboratory Mouse, (Oxford: Oxford University Press), pp 17–854

    Google Scholar 

  • Efstratiadis A (1998) Genetics of mouse growth. Int J Dev Biol 42:955–976

    PubMed  Google Scholar 

  • Falconer DS, Mackay TFC (1996) Introduction to quantitative genetics (Essex, UK: Longman Group)

    Google Scholar 

  • Fleury C, Neverova M, Collins S, Raimbault S, Champigny O, et al. (1997) Uncoupling protein-2: A novel gene linked to obesity and hyperinsulinemia. Nat Genet 15:269–272

    Article  PubMed  Google Scholar 

  • Galton F (1889) Human variety. Nature 39:296–297

    Google Scholar 

  • GenStat 7 Committee (2003) GenStat Release 7.1 Reference Manual (Oxford, UK: VSN International Limited)

    Google Scholar 

  • Gong DW, He YF, Karas M, Reitman M (1997) Uncoupling protein-3 is a mediator of thermogenesis regulated by thyroid hormone, beta 3-adrenergic agonists, and leptin. J Biol Chem 272:24129–24132

    Article  PubMed  Google Scholar 

  • Hahm S, Mizuno TM, Wu TJ, Wisor JP, Priest CA, et al. (1999) Targeted deletion of the Vgf gene indicates that the encoded secretory peptide precursor plays a novel role in the regulation of energy balance. Neuron 23:537–548

    Article  PubMed  Google Scholar 

  • Haley CS, Knott SA (1992) A simple regression method for mapping quantitative trait loci in line crosses using flanking markers. Heredity 69:315–324

    Google Scholar 

  • Haley CS, Knott SA, Elsen JM (1994) Mapping quantitative trait loci in crosses between outbred lines using least-squares. Genetics 136:1195–1207

    PubMed  Google Scholar 

  • Hastings IM, Moruppa SM, Bunger L, Hill WG (1997) Effects of selection on food intake in the adult mouse. J Anim Breed Genet 114:419–433

    Google Scholar 

  • Ishikawa A, Namikawa T (2004) Mapping major quantitative trait loci for postnatal growth in an intersubspecific backross between C57BL/6J and Philippine wild mice by using principal component analysis. Genes Genet Syst 79:27–39

    Article  PubMed  Google Scholar 

  • Jansen RC (1993) Interval mapping of multiple quantitative trait loci. Genetics 135:205–211

    PubMed  Google Scholar 

  • Jarvela I, Savukoski M, Ammala P, Von Koskull H (1998) Prenatally detected paternal uniparental chromosome 13 isodisomy. Prenatal Diag 18:1169–1173

    Article  PubMed  Google Scholar 

  • Jeon JT, Carlborg O, Tornsten A, Giuffra E, Amarger V, et al. (1999) A paternally expressed QTL affecting skeletal and cardiac muscle mass in pigs maps to the IGF2 locus. Nat Genet 21:157–158

    Article  PubMed  Google Scholar 

  • Knott SA, Marklund L, Haley CS, Andersson K, Davies W, et al. (1998) Multiple marker mapping of quantitative trait loci in a cross between outbred wild boar and large white pigs. Genetics 149:1069–1080

    PubMed  Google Scholar 

  • Lander ES, Green P (1987) Construction of multilocus genetic-linkage maps in humans. Proc Natl Acad Sci U S A 84:2363–2367

    PubMed  Google Scholar 

  • Lander ES, Kruglyak L (1995) Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results. Nat Genet 11:241–247

    Article  PubMed  Google Scholar 

  • Le Roy I, Perez-Diaz F, Cherfouh A, Roubertoux PL (1999) Preweanling sensorial and motor development in laboratory mice: quantitative trait loci mapping. Dev Psychobiol 34:139–158

    Article  PubMed  Google Scholar 

  • Leamy L, Cheverud JM (1984) Quantitative genetics and the evolution of ontogeny .2. Genetic and environmental correlations among age-specific characters in randombred house mice. Growth 48:339–353

    PubMed  Google Scholar 

  • Leamy LJ, Pomp D, Eisen EJ, Cheverud JM (2002) Pleiotropy of quantitative trait loci for organ weights and limb bone lengths in mice. Physiol Genomics 10:21–29

    PubMed  Google Scholar 

  • Liu XJ, Oliver F, Brown SDM, Denny P, Keightley PD (2001) High-resolution quantitative trait locus mapping for body weight in mice by recombinant progeny testing. Genet Res 77:191–197

    Article  PubMed  Google Scholar 

  • MGD (2004) Mouse Genome Database, Mouse Genome Informatics, The Jackson Laboratory, Bar Harbour, ME. Available at http://www.informatics.jax.org/

  • Nahmias C, Blin N, Elalouf JM, Mattei MG, Strosberg AD, et al. (1991) Molecular characterization of the mouse beta-3-adrenergic receptor - relationship with the atypical receptor of adipocytes. EMBO J 10:3721–3727

    PubMed  Google Scholar 

  • Neumann B, Kubicka P, Barlow DP (1995) Characteristics of imprinted genes. Nat Genet 9:12–13

    Article  PubMed  Google Scholar 

  • Nikaido L, Saito C, Mizuno Y, Meguro M, Bono H, et al. (2003) Discovery of imprinted transcripts in the mouse transcriptome using large-scale expression profiling. Genome Res 13:1402–1409

    Article  PubMed  Google Scholar 

  • Ohlsson H, Karlsson K, Edlund T (1993) Ipf1, a homeodomain-containing transactivator of the insulin gene. EMBO J 12:4251–4259

    PubMed  Google Scholar 

  • Piantanida M, Dellavecchia C, Floridia G, Giglio S, Hoeller H, et al. (1997) Ataxic gait and mental retardation with absence of the paternal chromosome 8 and an Idic(8)(P23.3): imprinting effect or nullisomy for distal 8p genes? Hum Genet 99:766–771

    Article  PubMed  Google Scholar 

  • Quintanilla R, Milan D, Bidanel JP (2002) A further look at quantitative trait loci affecting growth and fatness in a cross between Meishan and Large White pig populations. Genet Select Evol 34:193–210

    Article  Google Scholar 

  • Rance KA, Heath SC, Keightley PD (1997) Mapping quantitative trait loci for body weight on the X chromosome in mice. II. Analysis of congenic backcrosses. Genet Res 70:125–133

    Article  PubMed  Google Scholar 

  • Rattink AP, De Koning DJ, Faivre M, Harlizius B, Van Arendonk JAM, et al. (2000) Fine mapping and imprinting analysis for fatness trait QTLs in pigs. Mammal Genome 11:656–661

    Article  Google Scholar 

  • Reed DR, Li X, McDaniel AH, Lu K, Li SR, et al. (2003) Loci on chromosomes 2, 4, 9, and 16 for body weight, body length, and adiposity identified in a genome scan of an F-2 Intercross between the 129P3/J and C57BL/6ByJ mouse strains. Mamm Genome 14:302–313

    Article  PubMed  Google Scholar 

  • Reik W, Walter J (2001) Genomic imprinting: parental influence on the genome. Nat Rev Genet 2:21–32

    Article  PubMed  Google Scholar 

  • Rice T, Perusse L, Bouchard C, Rao DC (1999) Familial aggregation of body mass index and subcutaneous fat measures in the longitudinal Quebec Family Study. Genet Epidemiol 16:316–334

    Article  PubMed  Google Scholar 

  • Rocha JL, Eisen EJ, Van Vleck LD, Pomp D (2004) A large-sample QTL study in mice: I. growth. Mammal Genome 15:83–99

    Article  Google Scholar 

  • Seaton G, Haley CS, Knott SA, Kearsey M, Visscher PM (2002) QYL Express: mapping quantitative trait loci in of simple and complex pedigrees. Bioinformatics 18:339–340

    Article  PubMed  Google Scholar 

  • Selman C, Lumsden S, Bunger L, Hill WG, Speakman JR (2001) Resting metabolic rate and morphology in mice (Mus musculus) selected for high and low food intake. J Exp Biol 204:777–784

    PubMed  Google Scholar 

  • Sharp GL, Hill WG, Robertson A (1984) Effects of selection on growth, body composition and food intake in mice. 1. Responses in selected traits. Genet Res 43:75–92

    PubMed  Google Scholar 

  • Snyder EE, Walts B, Perusse L, Chagnon YC, Weisnagel SJ, et al. (2004) The human obesity gene map: the 2003 update. Obes Res 12:369–439

    PubMed  Google Scholar 

  • Strichman-Almashanu LZ, Lee RS, Onyango PO, Perlman E, Flam F, et al. (2002) A genome-wide screen for normally methylated human CpG islands that can identify novel imprinted genes. Genome Res 12:543–554

    PubMed  Google Scholar 

  • Sun XJ, Wang LM, Zhang YT, Yenush L, Myers MG, et al. (1995) Role of Irs-2 in Insulin and cytokine signaling. Nature 377:173–177

    Google Scholar 

  • Thomsen H, Lee HK, Rothschild MF, Malek M, Dekkers JCM (2004) Characterization of quantitative trait loci for growth and meat quality in a cross between commercial breeds of swine. J Anim Sci 82:2213–2228

    PubMed  Google Scholar 

  • Van Laere AS, Nguyen M, Braunschweig M, Nezer C, Collette C, et al. (2003) A regulatory mutation in IGF2 causes a major QTL effect on muscle growth in the pig. Nature 425:832–836

    Article  PubMed  Google Scholar 

  • van Ooijen JW (1992) Accuracy of mapping quantitative trait loci in autogamous species. Theoret Appl Genet 84:803–811

    Article  Google Scholar 

  • Vaughn TT, Pletscher LS, Peripato A, King-Ellison K, Adams E, et al. (1999) Mapping quantitative trait loci for murine growth: a closer look at genetic architecture. Genet Res 74:313–322

    Article  PubMed  Google Scholar 

  • Visscher PM, Thompson R, Haley C (1996) Confidence intervals in QTL mapping by bootstrapping. Genetics 143:1013–1020

    PubMed  Google Scholar 

  • Wang L, Leung FC (2004) An evaluation of new criteria for CpG islands in the human genome as gene markers. Bioinformatics 20:1170–1177

    Article  PubMed  Google Scholar 

  • Yamada Y, Watanabe H, Miura F, Soejima H, Uchiyama M, et al. (2004) A comprehensive analysis of allelic methylation status of CpG islands on human chromosome 21q. Genome Res 14:247–266

    Article  PubMed  Google Scholar 

  • Yang RC (2004) Epistasis of quantitative trait loci under different gene action models. Genetics 167:1493–1505

    Article  PubMed  Google Scholar 

  • Zeng Z-B (1994) Precision mapping of quantitative trait loci. Genetics 136:1457–1468

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kellie A. Rance.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rance, K.A., Fustin, JM., Dalgleish, G. et al. A paternally imprinted QTL for mature body mass on mouse Chromosome 8. Mamm Genome 16, 567–577 (2005). https://doi.org/10.1007/s00335-005-0012-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00335-005-0012-4

Keywords

Navigation