Advertisement

Mammalian Genome

, Volume 15, Issue 6, pp 492–502 | Cite as

A prevalent POLG CAG microsatellite length allele in humans and African great apes

  • Anja T. Rovio
  • Josef Abel
  • Arja L. Ahola
  • Aida M. Andres
  • Jaume Bertranpetit
  • Antoine Blancher
  • Ronald E. Bontrop
  • Leona G. Chemnick
  • Howard J. Cooke
  • James M. Cummins
  • Heidi A. Davis
  • David J. Elliott
  • Ellen Fritsche
  • Timothy B. Hargreave
  • Susan M. G. Hoffman
  • Anne M. Jequier
  • Shu-Huei Kao
  • Heui-Soo Kim
  • David R. Marchington
  • Denise Mehmet
  • Nel Otting
  • Joanna Poulton
  • Oliver A. Ryder
  • Hans-Christian Schuppe
  • Osamu Takenaka
  • Yau-Huei Wei
  • Lars Wichmann
  • Howard T. Jacobs
Article

Abstract

The human nuclear gene for the catalytic subunit of mitochondrial DNA polymerase γ (POLG) contains within its coding region a CAG microsatellite encoding a polyglutamine repeat. Previous studies demonstrated an association between length variation at this repeat and male infertility, suggesting a mechanism whereby the prevalent (CAG)10 allele, which occurs at a frequency of >80% in different populations, could be maintained by selection. Sequence analysis of the POLG CAG microsatellite region of more than 1000 human chromosomes reveals that virtually all allelic variation at the locus is accounted for by length variation of the CAG repeat. Analysis of POLG from African great apes shows that a prevalent length allele is present in each species, although its exact length is species-specific. In common chimpanzee (Pan troglodytes) a number of different sequence variants contribute to the prevalent length allele, strongly supporting the idea that the length of the POLG microsatellite region, rather than its exact nucleotide or amino acid sequence, is what is maintained. Analysis of POLG in other primates indicates that the repeat has expanded from a shorter, glutamine-rich sequence, present in the common ancestor of Old and New World monkeys.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alba MM, Santibanez-Koref MF, Hancock JM (2001) The comparative genomics of polyglutamine repeats: extreme differences in the codon organization of repeat-encoding regions between mammals and Drosophila. J Mol Evol 52, 249–259CrossRefPubMedGoogle Scholar
  2. 2.
    Alba MM, Santibanez-Koref MF, Hancock JM (1999) Conservation of polyglutamine tract size between mice and humans depends on codon interruption. Mol Biol Evol 16, 1641–1644CrossRefPubMedGoogle Scholar
  3. 3.
    Arnason U, Gullberg A, Janke A, Xu X (1996) Pattern and timing of evolutionary divergences among hominoids based on analyses of complete mtDNAs. J Mol Evol 43, 650–661CrossRefPubMedGoogle Scholar
  4. 4.
    Brinkmann B, Klintschar M, Neuhuber F, Huhne J, Rolf B (1998) Mutation rate in human microsatellites: influence of the structure and length of the tandem repeat. Am J Hum Genet 62, 1408–1415CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Calvas P, Blancher A, Salvignol I, Socha WW, Ruffle J (1994) Length polymorphism of a microsatellite in human and non human primates. C R Acad Sci III 317, 755–763PubMedGoogle Scholar
  6. 6.
    Choudhry S, Mukerji M, Srivastava AK, Jain S, Brahmachari SK (2001) CAG repeat instability at SCA2 locus: anchoring CAA interruptions and linked single nucleotide polymorphisms. Hum Mol Genet pp 2437–2446Google Scholar
  7. 7.
    Cooper G, Rubinsztein DC, Amos W (1998) Ascertainment bias cannot entirely account for human microsatellites being longer than their chimpanzee homologues. Hum Mol Genet 7, 1425–1429CrossRefPubMedGoogle Scholar
  8. 8.
    Ellegren H, Primmer CR, Sheldon BC (1995) Microsatellite’ evolution‘: directionality or bias? Nat Genet 11, 360–362CrossRefPubMedGoogle Scholar
  9. 9.
    Garza JC, Slatkin M, Freimer NB (1995) Microsatellite allele frequencies in humans and chimpanzees, with implications for constraints on allele size. Mol Biol Evol 12, 594–603PubMedGoogle Scholar
  10. 10.
    Gonzalez-Cabo P, Sanchez MI, Canizares J, Blanca JM, Martinez- Arias R, De Castro M, Bertranpetit J, Palau F, Molto MD, de Frutos R (1999) Incipient GAA repeats in the primate Friedreich ataxia homologous genes. Mol Biol Evol 16, 880–883CrossRefPubMedGoogle Scholar
  11. 11.
    Goodman M, Porter CA, Czelusniak J, Page SL, Schneider H, Shoshani J, Gunnell G, Groves CP (1998) Toward a phylogenetic classification of primates based on DNA evidence complemented by fossil evidence. Mol Phylogenet Evol 9, 585–598CrossRefPubMedGoogle Scholar
  12. 12.
    Gusmao L, Gonzalez-Neira A, Alves C, Sanchez-Diz P, Dauber EM, Amorim A, Carracedo A (2002) Genetic diversity of Y-specific STRs in chimpanzees (Pantroglodytes). Am J Primatol 57, 21–29CrossRefPubMedGoogle Scholar
  13. 13.
    Hancock JM, Worthey EA, Santibanez-Koref MF (2001) A role for selection in regulating the evolutionary emergence of disease-causing and other coding CAG repeats in humans and mice. Mol Biol Evol 18, 1014–1023CrossRefPubMedGoogle Scholar
  14. 14.
    Holtkemper U, Rolf B, Hohoff C, Forster P, Brinkmann B (2001) Mutation rates at two human Ychromosomal microsatellite loci using small pool PCR techniques. Hum Mol Genet 10, 629–633CrossRefPubMedGoogle Scholar
  15. 15.
    Justice CM, Den Z, Nguyen SV, Stoneking M, Deininger PL, Batzer MA, Keats BJ (2001) Phylogenetic analysis of the Friedreich ataxia GAA trinucleotide repeat. J Mol Evol 52, 232–238CrossRefPubMedGoogle Scholar
  16. 16.
    Kruglyak S, Durrett RT, Schug MD, Aquadro CF (1998) Equilibrium distributions of microsatellite repeat length resulting from a balance between slippage events and point mutations. Proc Natl Acad Sci USA 95, 10774–10778CrossRefPubMedGoogle Scholar
  17. 17.
    Lamantea E, Tiranti V, Bordoni A, Toscano A, Bono F, Servidei S, Papadimitriou A, Spelbrink H, Silvestri L, Casari G, Comi GP, Zeviani M (2002) Mutations of mitochondrial DNA polymerase gammaA are a frequent cause of autosomal dominant or recessive progressive external ophthalmoplegia. Ann Neurol 52, 211–219CrossRefPubMedGoogle Scholar
  18. 18.
    Lazaruk K, Wallin J, Holt C, Nguyen T, Walsh PS (2001) Sequence variation in humans and other primates at six short tandem repeat loci used in forensic identity testing. Forensic Sci lnt 119, 1–10CrossRefGoogle Scholar
  19. 19.
    Lecrenier N, Van Der Bruggen P, Foury F (1997) Mitochondrial DNA polymerases from yeast to man: a new family of polymerases. Gene 185, 147–152CrossRefPubMedGoogle Scholar
  20. 20.
    Lewis DL, Farr CL, Wang Y, Lagina AT, Kaguni LS (1996) Catalytic subunit of mitochondrial DNA polymerase from Drosophila embryos. Cloning, bacterial overexpression, and biochemical characterization J Biol Chem 271, 23389–23394CrossRefPubMedGoogle Scholar
  21. 21.
    Liao D, Weiner AM (1995) Concerted evolution of the tandemly repeated genes encoding primate U2 small nuclear RNA (the RNU2 locus) does not prevent rapid diversification of the (CT)n.(GA)n microsatellite embedded within the U2 repeat unit. Genomics 30, 583–593CrossRefPubMedGoogle Scholar
  22. 22.
    Martinez-Arias R, Comas D, Andres A, Abello MT, Domingo-Roura X, Bertranpetit J (2000) The tyrosinase gene in gorillas and the albinism of’ Snowflake‘. Pigment Cell Res 13, 467–470CrossRefPubMedGoogle Scholar
  23. 23.
    Page SL, Chiu C, Goodman M (1999) Molecular phylogeny of Old World monkeys (Cercopithecidae) as inferred from gamma-globin DNA sequences. Mol Phylogenet Evol 13, 348–359CrossRefPubMedGoogle Scholar
  24. 24.
    Reinartz GE, Karron JD, Phillips RB, Weber JL (2000) Patterns of microsatellite polymorphism in the range-restricted bonobo (Pan paniscus): considerations for interspecific comparison with chimpanzees (P. troglodytes). Mol Ecol 9, 315–328CrossRefPubMedGoogle Scholar
  25. 25.
    Ropp PA, Copeland WC (1996) Cloning and characterization of the human mitochondrial DNA polymerase, DNA polymerase gamma. Genomics 36, 449–458CrossRefPubMedGoogle Scholar
  26. 26.
    Rovio A., Tiranti V, Bednarz AL, Suomalainen A, Spelbrink JN, Lecrenier N, Melberg A, Zeviani M, Poulton J, Foury F, Jacobs HT (1999) Analysis of the trinucleotide CAG repeat from the human mitochondrial DNA polymerase gene in healthy and diseased individuals. Eur J Hum Genet 7, 140–146CrossRefPubMedGoogle Scholar
  27. 27.
    Rovio AT, Marchington DR, Donat S, Schuppe HC, Abel J, Fritsche E, Elliott DJ, Laippala P, Ahola AL, McNay D, Harrison RF, Hughes B, Barrett T, Bailey DM, Mehmet D, Jequier AM, Hargreave TB, Kao SH, Cummins JM, Barton DE, Cooke HJ, Wei YH, Wichmann L, Poulton J, Jacobs HT (2001) Mutations at the mitochondrial DNA polymerase (POLG) locus associated with male infertility. Nat Genet 29, 261–262CrossRefPubMedGoogle Scholar
  28. 28.
    Rubinsztein DC, Amos W, Leggo J, Goodburn S, Jain S, Li SH, Margolis RL, Ross CA, Ferguson-Smith MA (1995) Microsatellite evolution-evidence for directionality and variation in rate between species. Nat Genet 10, 337–343CrossRefPubMedGoogle Scholar
  29. 29.
    Santibanez-Koref MF, Gangeswaran R, Hancock JM (2001) A relationship between lengths of microsatellites and nearby substitution rates in mammalian genomes. Mol Biol Evol 18, 2119–2123CrossRefPubMedGoogle Scholar
  30. 30.
    Satta Y (2001) Comparison of DNA and protein polymorphisms between humans and chimpanzees. Genes Genet Syst 76, 159–168CrossRefPubMedGoogle Scholar
  31. 31.
    Spelbrink JN, Toivonen JM, Hakkaart GA, Kurkela JM, Cooper HM, Lehtinen SK, Lecrenier N, Back JW, Speijer D, Foury F, Jacobs HT (2000) In vivo functional analysis of the human mitochondrial DNA polymerase POLG expressed in cultured human cells. J Biol Chem 275, 24818–24828CrossRefPubMedGoogle Scholar
  32. 32.
    von Dornum M, Ruvolo M (1999) Phylogenetic relationships of the New World monkeys (Primates, platyrrhini) based on nuclear G6PD DNA sequences. Mol Phylogenet Evol 11, 459–476CrossRefGoogle Scholar
  33. 33.
    Van Goethem G, Dermaut B, Lofgren A, Martin JJ, Van Broeckhoven C (2001) Mutation of POLG is associated with progressive external ophthalmoplegia characterized by mtDNA deletions. Nat Genet 28, 211–212CrossRefPubMedGoogle Scholar
  34. 34.
    Goethem G, Schwartz M, Lofgren A, Dermaut B, Van Broeckhoven C, Vissing J (2003) Novel POLG mutations in progressive external ophthalmoplegia mimicking mitochondrial neurogastrointestinal encephalomyopathy. Eur J Hum Genet 11, 547–549CrossRefPubMedGoogle Scholar
  35. 35.
    Walsh PS, Metzger DA, Higuchi R (1991) Chelex 100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. Biotechniques 10, 506–513PubMedGoogle Scholar
  36. 36.
    Webster MT, Smith NG, Ellegren H (2002) Microsatellite evolution inferred from human-chimpanzee genomic sequence alignments. Proc Natl Acad Sci USA. 99, 8748–8753CrossRefPubMedGoogle Scholar
  37. 37.
    Xu W, Liu L, Emson PC, Harrington CR, Charles IG (1997) Evolution of a homopurine-homopyrimidine pentanucleotide repeat sequence upstream of the human inducible nitric oxide synthase gene. Gene 204, 165–170CrossRefPubMedGoogle Scholar
  38. 38.
    Ye F, Carrodeguas JA, Bogenhagen DF (1996) The gamma subfamily of DNA polymerases: cloning of a developmentally regulated cDNA encoding Xenopus laevis mitochondrial DNA polymerase gamma. Nucleic Acids Res 24, 1481–1488CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Zhang D, Mott JL, Chang SW, Denniger G, Feng Z, Zassenhaus HP (2000) Construction of transgenic mice with tissue-specific acceleration of mitochondrial DNA mutagenesis. Genomics 69, 151–161CrossRefPubMedGoogle Scholar
  40. 40.
    Zhang YW, Ryder OA, Zhang ZP (2001) Genetic divergence of orangutan subspecies (Pongo pygmaeus). J Mol Evol 52, 516–523CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • Anja T. Rovio
    • 1
  • Josef Abel
    • 2
  • Arja L. Ahola
    • 3
  • Aida M. Andres
    • 4
  • Jaume Bertranpetit
    • 4
  • Antoine Blancher
    • 5
  • Ronald E. Bontrop
    • 6
  • Leona G. Chemnick
    • 7
  • Howard J. Cooke
    • 8
  • James M. Cummins
    • 9
  • Heidi A. Davis
    • 7
  • David J. Elliott
    • 8
  • Ellen Fritsche
    • 2
  • Timothy B. Hargreave
    • 10
  • Susan M. G. Hoffman
    • 11
  • Anne M. Jequier
    • 12
  • Shu-Huei Kao
    • 14
  • Heui-Soo Kim
    • 14
  • David R. Marchington
    • 15
  • Denise Mehmet
    • 9
  • Nel Otting
    • 6
  • Joanna Poulton
    • 15
  • Oliver A. Ryder
    • 7
  • Hans-Christian Schuppe
    • 16
  • Osamu Takenaka
    • 17
  • Yau-Huei Wei
    • 13
  • Lars Wichmann
    • 3
  • Howard T. Jacobs
    • 1
    • 18
  1. 1.Institute of Medical Technology and Tampere University HospitalUniversity of TampereTampereFinland
  2. 2.Institut fuer umweltmedizinische Forschung GmbH at the University of DuesseldorfDuesseldorfGermany
  3. 3.Department of AnatomyUniversity of TampereTampereFinland
  4. 4.Unitat de Biologia EvolutivaUniversitat Pompeu FabraBarcelonaSpain
  5. 5.Laboratoire d’Immunogénétique Moléculaire Université Paul SabatierToulouseFrance
  6. 6.Biomedical Primate Research CenterGH, RijswlikNetherlands
  7. 7.Center for Reproduction of Endangered SpeciesZoological Society of San DiegoSan DiegoUSA
  8. 8.MRC Human Genetics Unit EdinburghEdinburghScotland
  9. 9.Division of Verterinary and Biomedical sciencesMurdoch UniversityMurdochWestern Australia
  10. 10.Department of UrologyWestern General HospitalEdinburghScotland
  11. 11.Department of ZoologyMiami UniversityOxfordUSA
  12. 12.Joonadalup Health CampusPerthWestern Australia
  13. 13.Department of BiochemistryNational Yang Ming UniversityTaipeiTaiwan
  14. 14.Division of Biological SciencePusah National UniversityPusahKorea
  15. 15.Nuffield Department of Obstetrics and GynaecologyUniversity of OxfordOxfordEngland
  16. 16.Center of Dermatology and AndrologyJustus Liebig UniversityGiessenGermany
  17. 17.Department of Cellular and Molecular Biology, Primate Research InstituteKyoto UniversityAichiJapan
  18. 18.Institute of Biomedical and Life SciencesUniversity of GlasgowGlasgowScotland

Personalised recommendations