Mammalian Genome

, Volume 16, Issue 6, pp 405–413 | Cite as

Efficient and fast targeted production of murine models based on ENU mutagenesis

  • M. Augustin
  • R. Sedlmeier
  • T. Peters
  • U. Huffstadt
  • E. Kochmann
  • D. Simon
  • M. Schöniger
  • S. Garke-Mayerthaler
  • J. Laufs
  • M. Mayhaus
  • S. Franke
  • M. Klose
  • A. Graupner
  • M. Kurzmann
  • C. Zinser
  • A. Wolf
  • M. Voelkel
  • M. Kellner
  • M. Kilian
  • S. Seelig
  • A. Koppius
  • A. Teubner
  • D. Korthaus
  • M. Nehls
  • S. Wattler
Article

Abstract

Mice with targeted genetic alterations are the most effective tools for deciphering organismal gene function. We generated an ENU-based parallel C3HeB/FeJ sperm and DNA archive characterized by a high probability to identify allelic variants of target genes as well as high efficiencies in allele retrieval and model revitalization. Our archive size of over 17,000 samples contains approximately 340,000 independent alleles (20 functional mutations per individual sample). Based on an estimated number of approximately 30,000 mouse genes, the parallel sperm/DNA archive should permit the identification and recovery of ten or more alleles per average target gene which translates to a calculated 99% success rate in the discovery of five allelic variants for any given average gene. The low rate of unrelated ENU-induced passenger mutations has no practical impact on the analysis of the allele-specific phenotype at the G3 generation because of dilution and free segregation of such unrelated passenger mutations. To date 39 mouse models representing 33 different genes have been recovered from our archive using in vitro fertilization techniques. The generation time for a murine model heterozygous for a mutation in a gene of interest is less than 2 months, i.e., three to four times faster compared with current embryonic stem-cell–based technologies. We conclude that ENU-based targeted mutagenesis is a powerful tool for the fast and high-throughput production of murine gene-specific models for biomedical research.

Keywords

Mutation Load Sperm Sample Archive Size Passenger Mutation Temperature Gradient Capillary Electrophoresis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Auerbach W, Dunmore JH, Fairchild-Huntress V, Fang O, Auerbach AB, et al. (2000) Establishment and chimera analysis of 129/SvEv- and C57BL/6-derived mouse embryonic stem cell lines. Biotechniques 29(5): 1024–1032PubMedGoogle Scholar
  2. Beier DR, (2000) Sequence-based analysis of mutagenized mice. Mamm Genome 11(7): 594–597CrossRefPubMedGoogle Scholar
  3. Coghill EL, Hugjll A, Parkinson N, Davidson C, Glenister P, et al. (2002) A gene-driven approach to the identification of ENU mutants in the mouse. Nat Genet 30(3): 255–256CrossRefPubMedGoogle Scholar
  4. Favor J (1994) Specific-locus mutation test in germ cells of the mouse: an assessment of the screening procedures and the mutational events detected. In Male-Mediated Developmental Toxicity Mattison DR, Olshan AF, eds. (New York: Plenum Press), pp 23–36Google Scholar
  5. Fitch KR, McGowan KA, van Raamsdonk CD, Fuchs H, Lee D, et al. (2003) Genetics of dark skin in mice. Genes Dev 17(2): 214–228CrossRefPubMedGoogle Scholar
  6. Girald–Rosa W, Vleugels RA, Musiek AC, Sligh JE (2005) High-throughput mitochondrial genome screening method for nonmelanoma skin cancer using multiplexed temperature gradient capillary electrophoresis. Clin Chem 51: 305–311CrossRefPubMedGoogle Scholar
  7. Hafezparast M, Klocke R, Ruhrberg C, Marquardt A, Ahmad–Annuar A, et al. (2003) Mutations in dynein link motor neuron degeneration to defects in retrograde transport. Science 300(5620): 808–812CrossRefPubMedGoogle Scholar
  8. Hansen J, Floss T, Van Sloun P, Fuchtbauer EM, Vauti F, et al. (2003) A large-scale, gene-driven mutagenesis approach for the functional analysis of the mouse genome. Proc Natl Acad Sci U S A 100(17): 9918–9922CrossRefPubMedGoogle Scholar
  9. Harada A, Takei Y, Kanai Y, Tanaka Y, Nonaka S, et al. (1998) Golgi vesiculation and lysosome dispersion in cells lacking cytoplasmic dynein. J Cell Biol 141(1): 51–59CrossRefPubMedGoogle Scholar
  10. Hitotsumachi S, Carpenter DA, Russell WL (1985) Dose-repetition increases the mutagenic effectiveness of N-ethyl-N-nitrosourea in mouse spermatogonia. Proc Natl Acad Sci U S A 82(19): 6619–6621PubMedGoogle Scholar
  11. Hrabe de Angelis MH, Flaswinkel H, Fuchs H, Rathkolb B, Soewarto D, et al. (2000) Genome-wide, large-scale production of mutant mice by ENU mutagenesis. Nat Genet 25(4): 444–447CrossRefPubMedGoogle Scholar
  12. Justice MJ, Carpenter DA, Favor J, Neuhauser-Klaus A, Hrabe de Angelis M, et al. (2000) Effects of ENU dosage on mouse strains. Mamm Genome 11(7): 484–488CrossRefPubMedGoogle Scholar
  13. Ledermann B (2000) Embryonic stem cells and gene targeting. Exp Physiol 85(6): 603–613CrossRefPubMedGoogle Scholar
  14. Ledermann B, Burki K (1991) Establishment of a germ-line competent C57BL/6 embryonic stem cell line. Exp Cell Res 197(2): 254–258CrossRefPubMedGoogle Scholar
  15. Li Q, Liu Z, Monroe H, Culiat CT (2002) Integrated platform for detection of DNA sequence variants using capillary array electrophoresis. Electrophoresis 23(10): 1499–1511CrossRefPubMedGoogle Scholar
  16. Marschall S, Hrabe de Angelis M (2003) In vitro fertilization/cryopreservation. Methods Mol Biol 209: 35–50PubMedGoogle Scholar
  17. Marschall S, Huffstadt U, Balling R, Hrabe de Angelis M (1999) Reliable recovery of inbred mouse lines using cryopreserved spermatozoa. Mamm Genome 10(8): 773–776CrossRefPubMedGoogle Scholar
  18. Murphy K, Hafez M, Philips J, Yarnell K, Gutshall K, et al. (2003) Evaluation of temperature gradient capillary electrophoresis for detection of the factor v leiden mutation: coincident identification of a novel polymorphism in factor v. Mol Diagn 7(1): 35–40PubMedGoogle Scholar
  19. Nadeau JH, Balling R, Barsh G, Beier D, Brown SD, et al. (2001) Sequence interpretation. Functional annotation of mouse genome sequences. Science 291(5507): 1251–1255CrossRefPubMedGoogle Scholar
  20. Nolan PM, Peters J, Strivens M, Rogers D, Hagan J, et al. (2000) A systematic, genome-wide, phenotype-driven mutagenesis programme for gene function studies in the mouse. Nat Genet 25(4): 440–443CrossRefPubMedGoogle Scholar
  21. Noveroske JK, Weber JS, Justice MJ (2000) The mutagenic action of N-ethyl-N-nitrosourea in the mouse. Mamm Genome 11(7): 478–483CrossRefPubMedGoogle Scholar
  22. Patrucco E, Notte A, Barberis L, Selvetella G, Maffei A, et al. (2004) PI3Kgamma modulates the cardiac response to chronic pressure overload by distinct kinase-dependent and -independent effects. Cell 118(3): 375–387CrossRefPubMedGoogle Scholar
  23. Quwailid MM, Hugil A, Dear N, Vizor L, Wells S, et al. (2004) A gene-driven ENU-based approach to generating an allelic series in any gene. Mamm Genome 15(8): 585–591CrossRefPubMedGoogle Scholar
  24. Russ A, Stumm G, Augustin M, Sedlmeir R, Wattler S, et al. (2002) Random mutagenesis in the mouse as a tool in drug discovery. Drug Discov Today 7(23): 1175–1183CrossRefPubMedGoogle Scholar
  25. Russell WL, Kelly EM, Hunsicker PR, Bangham JW, Maddux SC, et al. (1979) Specific-locus test shows ethylnitrosourea to be the most potent mutagen in the mouse. Proc Natl Acad Sci U S A 76(11): 5818–5819PubMedGoogle Scholar
  26. Russell WL, Hunsicker PR, et al. (1982) Effect of dose fractionation on the ethylnitrosourea induction of specific-locus mutations in mouse spermatogonia. Proc Natl Acad Sci U S A 79(11): 3592–3593PubMedGoogle Scholar
  27. Schoonjans L, Kreemers V, Danloy S, Moreadith RW, Laroche Y, et al. (2003) Improved generation of germline-competent embryonic stem cell lines from inbred mouse strains. Stem Cells 21(1): 90–97CrossRefPubMedGoogle Scholar
  28. Silver L (1995)The mouse genome. In Mouse Genetics: Concepts and Applications, Silver L, ed. (City: Oxford University Press) pp 76-133Google Scholar
  29. Skarnes WC, von Melchner H, Wurst W, Hicks G, Nord AS, et al. (2004) A public gene trap resource for mouse functional genomics. Nat Genet 36(6): 543–544CrossRefPubMedGoogle Scholar
  30. Threadgill DW, Dlugosz AA, Hansen LA, Tennenbaum T, Lichti U, et al. (1995)/Targeted disruption of mouse EGF receptor: effect of genetic background on mutant phenotype. Science 269(5221): 230–234PubMedGoogle Scholar
  31. Threadgill DW, Yee D, Matin A, Nadeau JH, Magnusom T (1997) Genealogy of the 129 inbred strains: 129/SvJ is a contaminated inbred strain. Mamm Genome 8(6): 390–393CrossRefPubMedGoogle Scholar
  32. Till BJ, Colbert T, Tompa R, Enns LC, Codomo CA, et al. (2003) High-throughput TILLING forunctional genomics. Methods Mol Biol 236: 205–220Google Scholar
  33. Vanhaesebroeck B, Rohn JL, Waterfield MD (2004) Gene targeting: attention to detail. Cell 118(3): 274–276CrossRefPubMedGoogle Scholar
  34. Weber JS, Salinger A, Justice MJ (2000) Optimal N-ethyl-N-nitrosourea (ENU) doses for inbred mouse strains. Genesis 26(4): 230–233CrossRefPubMedGoogle Scholar
  35. Wichmann B, Hill D (1987) Building a random-number generator. BYTE 12(3), 127–128Google Scholar
  36. Wiles MV, Vauti F, Otte J, Fuchtbauer EM, Ruiz P, et al. (2000) Establishment of a gene-trap sequence tag library to generate mutant mice from embryonic stem cells. Nat Genet 24(1): 13–14CrossRefPubMedGoogle Scholar
  37. Zambrowicz BP, Friedrich GA, Buxton EC, Lilleberg SC, Person C, et al. (1998) Disruption and sequence identification of 2,000 genes in mouse embryonic stem cells. Nature 392 (6676), 608–611CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Inc. 2005

Authors and Affiliations

  • M. Augustin
    • 1
  • R. Sedlmeier
    • 1
  • T. Peters
    • 1
  • U. Huffstadt
    • 1
  • E. Kochmann
    • 1
  • D. Simon
    • 1
  • M. Schöniger
    • 1
  • S. Garke-Mayerthaler
    • 1
  • J. Laufs
    • 1
  • M. Mayhaus
    • 1
  • S. Franke
    • 1
  • M. Klose
    • 1
  • A. Graupner
    • 1
  • M. Kurzmann
    • 1
  • C. Zinser
    • 1
  • A. Wolf
    • 1
  • M. Voelkel
    • 1
  • M. Kellner
    • 1
  • M. Kilian
    • 1
  • S. Seelig
    • 1
  • A. Koppius
    • 1
  • A. Teubner
    • 1
  • D. Korthaus
    • 1
  • M. Nehls
    • 1
  • S. Wattler
    • 1
  1. 1.Ingenium Pharmaceuticals AGMartinsriedGermany

Personalised recommendations