Advertisement

Mammalian Genome

, Volume 15, Issue 5, pp 370–382 | Cite as

Human BAC-mediated rescue of the Friedreich ataxia knockout mutation in transgenic mice

  • Joseph P. Sarsero
  • Lingli Li
  • Timothy P. Holloway
  • Lucille Voullaire
  • Sophie Gazeas
  • Kerry J. Fowler
  • Denise M. Kirby
  • David R. Thorburn
  • Adam Galle
  • Surindar Cheema
  • Michel Koenig
  • Robert Williamson
  • Panos A. IoannouEmail author
Original Contributions

Abstract

Three independent transgenic mouse lines were generated with the human Friedreich ataxia gene, FRDA, in an 188-kb bacterial artificial chromosome (BAC) genomic sequence. Three copies of the transgene per diploid mouse genome were integrated in a single site in each mouse line. Transgenic mice were mated with mice heterozygous for a knockout mutation of the murine Frda gene, to generate mice homozygous for the Frda knockout mutation and hemizygous or homozygous for the human transgene. Rescue of the embryonic lethality that is associated with homozygosity for the Frda knockout mutation was observed in all three lines. Rescued mice displayed normal behavioral and biochemical parameters. RT-PCR analysis demonstrated that human FRDA mRNA is expressed in all the lines. The relative expression of the human FRDA and mouse Frda genes showed a similar pattern in different tissues in all three lines, indicating position-independent control of expression of the human FRDA transgene. However, large differences in the human:mouse mRNA ratio were observed between different tissues in all three lines. The human transgene is expressed at much higher levels in the brain, liver, and skeletal muscle than the endogenous gene, while expression of the human transgene in blood is only 25–30% of the mouse gene. These studies will facilitate the development of humanized mouse models of Friedreich ataxia through introduction of a GAA trinucleotide expansion or specific known point mutations in the normal human FRDA locus and the study of the regulation of gene expression from the FRDA locus.

Keywords

Bacterial Artificial Chromosome Bacterial Artificial Chromosome Clone Denature High Performance Liquid Chromatography Friedreich Ataxia Founder Mouse 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We thank J. Vadolas and D. Jamsai for advice on microinjection procedures and J. Scott for performing the microinjections. We thank A. Sylvain, C. Turner, J. Broughton, N. Kerr, and S. de la Rue for animal care; A. Gibbs and E. Tamanas for technical assistance; and M. Pook for informative discussions. All animal procedures were conducted under the approval of the Royal Children’s Hospital Animal Experimentation Ethics Committee. This study was supported by grants from the Muscular Dystrophy Association (USA), the ‘Seek a Miracle ’ Fund, the Friedreich Ataxia Research Alliance, the Ronald Geoffrey Arnott Foundation, and by a block grant from the National Health and Medical Research Council of Australia. We also acknowledge the Victorian and New South Wales FA support groups for their moral and financial support.

References

  1. Babcock, M, Silva, D, Oaks, R, Davis-Kaplan, S, Jiralerspong, S,  et al. 1997Regulation of mitochondrial iron accumulation by Yfh1p, a putative homolog of frataxinScience27617091712PubMedGoogle Scholar
  2. Becker, EM, Greer, JM, Ponka, P, Richardson, DR 2002Erythroid differentiation and protoporphyrin IX down-regulate frataxin expression in Friend cells: characterization of frataxin expression compared to molecules involved in iron metabolism and hemoglobinizationBlood9938133822CrossRefPubMedGoogle Scholar
  3. Campuzano, V, Montermini, L, Molto, MD, Pianese, L, Cossee, M,  et al. 1996Friedreich’s ataxia: autosomal recessive disease caused by an intronic GAA triplet repeat expansionScience27114231427PubMedGoogle Scholar
  4. Campuzano, V, Montermini, L, Lutz, Y, Cova, L, Hindelang, C,  et al. 1997Frataxin is reduced in Friedreich ataxia patients and is associated with mitochondrial membranesHum Mol Genet617711780PubMedGoogle Scholar
  5. Cavadini, P, Gellera, C, Patel, PI, Isaya, G 2000Human frataxin maintains mitochondrial iron homeostasis in Saccharomyces cerevisiae Hum Mol Genet925232530CrossRefPubMedGoogle Scholar
  6. Cavadini, P, O’Neill, HA, Benada, O, Isaya, G 2002Assembly and iron-binding properties of human frataxin, the protein deficient in Friedreich ataxiaHum Mol Genet11217227CrossRefPubMedGoogle Scholar
  7. Chen, OS, Hemenway, S, Kaplan, J 2002Inhibition of Fe-S cluster biosynthesis decreases mitochondrial iron export: evidence that Yfh1p affects Fe-S cluster synthesisProc Natl Acad Sci USA991232112326CrossRefPubMedGoogle Scholar
  8. Cossee, M, Puccio, H, Gansmuller, A, Koutnikova, H, Dierich, A,  et al. 2000Inactivation of the Friedreich ataxia mouse gene leads to early embryonic lethality without iron accumulationHum Mol Genet912191226CrossRefPubMedGoogle Scholar
  9. Duby, G, Foury, F, Ramazzotti, A, Herrmann, J, Lutz, T 2002A non-essential function for yeast frataxin in iron-sulfur cluster assemblyHum Mol Genet1126352643CrossRefPubMedGoogle Scholar
  10. Durr, A, Cossee, M, Agid, Y, Campuzano, V, Mignard, C,  et al. 1996Clinical and genetic abnormalities in patients with Friedreich’s ataxiaN Engl J Med33511691175PubMedGoogle Scholar
  11. Epplen, C, Epplen, JT, Frank, G, Miterski, B, Santos, EJ,  et al. 1997Differential stability of the (GAA)n tract in the Friedreich ataxia (STM7) geneHum Genet99834836Google Scholar
  12. Filla, A, Michele, G, Cavalcanti, F, Pianese, L, Monticelli, A,  et al. 1996The relationship between trinucleotide (GAA) repeat length and clinical features in Friedreich ataxiaAm J Hum Genet59554560PubMedGoogle Scholar
  13. Gakh, O, Adamec, J, Gacy, AM, Twesten, RD, Owen, WG,  et al. 2002Physical evidence that yeast frataxin is an iron storage proteinBiochemistry4167986804CrossRefPubMedGoogle Scholar
  14. Grabczyk, E, Usdin, K 2000The GAA*TTC triplet repeat expanded in Friedreich’s ataxia impedes transcription elongation by T7 RNA polymerase in a length and supercoil dependent mannerNucleic Acids Res2828152822CrossRefPubMedGoogle Scholar
  15. Harding, AE 1981Friedreich’s ataxia: a clinical and genetic study of 90 families with an analysis of early diagnostic criteria and intrafamilial clustering of clinical featuresBrain104589620PubMedGoogle Scholar
  16. Harding, AE 1984The Hereditary Ataxias and Related Disorders.EdinburghChurchill LivingstoneGoogle Scholar
  17. Hogan, B 1994Manipulating the Mouse Embryo-A Laboratory ManualCold Spring Harbor Laboratory PressPlainview, N.Y.Google Scholar
  18. Ioannou, PA, Amemiya, CT, Games, J, Kroisel, PM, Shizuya, H,  et al. 1994A new bacteriophage P1-derived vector for the propagation of large human DNA fragmentsNat Genet68489PubMedGoogle Scholar
  19. Jamsai, D, Nefedov, M, Narayanan, K, Orford, M, Fucharoen, S,  et al. 2003aInsertion of common mutations into the human beta-globin locus using GET Recombination and an EcoRI endonuclease counterselection cassetteJ Biotechnol10119CrossRefGoogle Scholar
  20. Jamsai, D, Orford, M, Fucharoen, S, Williamson, R, Ioannou, PA 2003bInsertion of modifications in the beta-globin locus using GET recombination with single-stranded oligonucleotides and denatured PCR fragmentsMol Biotechnol232936CrossRefGoogle Scholar
  21. Jamsai, D, Orford, M, Nefedov, M, Fucharoen, S, Williamson, R,  et al. 2003cTargeted modification of a human b-globin locus BAC clone using GET Recombination and an I-SceI counterselection cassetteGenomics826877CrossRefGoogle Scholar
  22. Koutnikova, H, Campuzano, V, Foury, F, Dolle, P, Cazzalini, O,  et al. 1997Studies of human, mouse and yeast homologues indicate a mitochondrial function for frataxinNat Genet16345351PubMedGoogle Scholar
  23. Lesuisse, E, Santos, R, Matzanke, BF, Knight, SA, Camadro, JM,  et al. 2003Iron use for haeme synthesis is under control of the yeast frataxin homologue (Yfh1)Hum Mol Genet12879889CrossRefPubMedGoogle Scholar
  24. McPherson, JD, Marra, M, Hillier, L, Waterston, RH, Chinwalla, A,  et al. 2001A physical map of the human genomeNature409934941PubMedGoogle Scholar
  25. Miranda, CJ, Santos, MM, Ohshima, K, Smith, J, Li, L,  et al. 2002Frataxin knockin mouseFEBS Lett512291297CrossRefPubMedGoogle Scholar
  26. Monros, E, Molto, MD, Martinez, F, Canizares, J, Blanca, J,  et al. 1997Phenotype correlation and intergenerational dynamics of the Friedreich ataxia GAA trinucleotide repeatAm J Hum Genet61101110PubMedGoogle Scholar
  27. Muhlenhoff, U, Richhardt, N, Ristow, M, Kispal, G, Lill, R 2002The yeast frataxin homolog Yfh1p plays a specific role in the maturation of cellular Fe/S proteinsHum Mol Genet1120252036CrossRefPubMedGoogle Scholar
  28. Muyrers, JP, Zhang, Y, Testa, G, Stewart, AF 1999Rapid modification of bacterial artificial chromosomes by ET-recombinationNucleic Acids Res2715551557CrossRefPubMedGoogle Scholar
  29. Narayanan, K, Williamson, R, Zhang, Y, Stewart, AF, Ioannou, PA 1999Efficient and precise engineering of a 200-kb beta-globin human/bacterial artificial chromosome in E. coli DH10B using an inducible homologous recombination systemGene Ther6442447CrossRefPubMedGoogle Scholar
  30. Ohshima, K, Montermini, L, Wells, RD, Pandolfo, M 1998Inhibitory effects of expanded GAATTC triplet repeats from intron I of the Friedreich ataxia gene on transcription and replication in vivo. J Biol Chem2731458814595CrossRefGoogle Scholar
  31. Park, S, Gakh, O, Mooney, SM, Isaya, G 2002The ferroxidase activity of yeast frataxinJ Biol Chem2773858938595CrossRefPubMedGoogle Scholar
  32. Pook, MA, Al-Mahdawi, S, Carroll, CJ, Cossee, M, Puccio, H,  et al. 2001Rescue of the Friedreich’s ataxia knockout mouse by human YAC transgenesisNeurogen3185193PubMedGoogle Scholar
  33. Puccio, H, Simon, D, Cossee, M, Criqui-Filipe, P, Tiziano, F,  et al. 2001Mouse models for Friedreich ataxia exhibit cardiomyopathy, sensory nerve defect and Fe-S enzyme deficiency followed by intramitochondrial iron depositsNat Genet27181186CrossRefPubMedGoogle Scholar
  34. Rahman, S, Blok, RB, Dahl, HH, Danks, DM, Kirby, DM,  et al. 1996Leigh syndrome: clinical features and biochemical and DNA abnormalitiesAnn Neurol39343351PubMedGoogle Scholar
  35. Robinson, JB, Brent, LG, Sumegi, B, Srere, PA 1987An enzymatic approach to the study of, the Krebs tricarboxylic acid cycleDarley-Usmar, VMRickwood, DWilson, MT eds. Mitochondria: A practical ApproachIRL Press LimitedOxford153170Google Scholar
  36. Rotig, A, Lonlay, P, Chretien, D, Foury, F, Koenig, M,  et al. 1997Aconitase and mitochondrial iron-sulphur protein deficiency in Friedreich ataxiaNat Genet17215217PubMedGoogle Scholar
  37. Sakamoto, N, Ohshima, K, Montermini, L, Pandolfo, M, Wells, RD 2001Sticky DNA, a self-associated complex formed at long GAA.TTC repeats in intron 1 of the frataxin gene, inhibits transcriptionJ Biol Chem2762717127177CrossRefPubMedGoogle Scholar
  38. Sarsero, JP, Li, L, Wardan, H, Sitte, K, Williamson, R,  et al. 2003Upregulation of expression from the FRDA genomic locus for the therapy of Friedreich ataxiaJ Gene Med57281CrossRefPubMedGoogle Scholar
  39. Shizuya, H, Birren, B, Kim, UJ, Mancino, V, Slepak, T,  et al. 1992Cloning and stable maintenance of 300-kilobase-pair fragments of human DNA in Escherichia coli using an F-factor-based vectorProc Natl Acad Sci USA8987948797PubMedGoogle Scholar
  40. Turner, BJ, Rembach, A, Spark, R, Lopes, EC, Cheema, SS 2003Opposing effects of low and high-dose clozapine on survival of transgenic amyotrophic lateral sclerosis miceJ Neurosci Res74605613CrossRefPubMedGoogle Scholar
  41. Venter, JC, Adams, MD, Myers, EW, Li, PW, Mural, RJ,  et al. 2001The sequence of the human genomeScience29113041351PubMedGoogle Scholar
  42. Wilson, RB, Roof, DM 1997Respiratory deficiency due to loss of mitochondrial DNA in yeast lacking the frataxin homologueNat Genet16352357PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • Joseph P. Sarsero
    • 1
  • Lingli Li
    • 1
  • Timothy P. Holloway
    • 1
  • Lucille Voullaire
    • 2
  • Sophie Gazeas
    • 3
  • Kerry J. Fowler
    • 3
  • Denise M. Kirby
    • 4
  • David R. Thorburn
    • 4
  • Adam Galle
    • 5
  • Surindar Cheema
    • 5
  • Michel Koenig
    • 6
  • Robert Williamson
    • 1
  • Panos A. Ioannou
    • 1
    Email author
  1. 1.Cell and Gene Therapy Research Group, Murdoch Childrens Research Institute, University of Melbourne Department of PediatricsRoyal Children’s HospitalMelbourneAustralia
  2. 2.Cytogenetics LaboratoryMurdoch Childrens Research InstituteMelbourneAustralia
  3. 3.Disease Model UnitMurdoch Childrens Research InstituteMelbourneAustralia
  4. 4.Mitochondrial ResearchMurdoch Childrens Research InstituteMelbourneAustralia
  5. 5.Howard Florey Institute of Experimental Physiology and MedicineThe University of MelbourneParkvilleAustralia
  6. 6.Institut de Génétique et de Biologic Moléculaire et Cellulaire, CNRS/INSERM, Hopitaux Universitaires de StrasbourgUniversité Louise PasteurIllkirchFrance

Personalised recommendations