Mammalian Genome

, Volume 16, Issue 1, pp 20–31 | Cite as

A deletion causing spontaneous fracture identified from a candidate region of mouse Chromosome 14

  • Yan Jiao
  • Xinmin Li
  • Wesley G. Beamer
  • Jian Yan
  • Yiai Tong
  • Daniel Goldowitz
  • Bruce Roe
  • Weikuan GuEmail author
Original Contributions


Map-based cloning is an iterative approach that identifies the underlying genetic cause of a mutant phenotype. However, the classic protocol of positional cloning is time-consuming and labor-intensive. We now describe a genome sequence–based cloning approach that has led to localizing the underlying genetic cause of spontaneous fractures (sfx) in a mouse model. The sfx/sfx mouse is characterized by a spontaneous femoral fracture seen around 6 weeks of age, which represents a new mouse model for bone fragility. Genetic studies indicate that the phenotype of sfx/sfx mice is caused by an alteration at a single locus that is roughly mapped onto the central region of mouse Chromosome 14. Using our strategy of combining mouse genome resources and high-throughput technology, we discovered a deletion of all 12 exons in the gene for L-gulonolactone oxidase (LGO), a key enzyme in the synthesis of ascorbic acid. We have also examined the expression of LGO and found no expression of LGO in sfx mice while the LGO expresses in several tissues of normal mice. Our data demonstrated the feasibility to positionally clone the mutated gene from a non-fine-mapped locus, which has applicability to the positional cloning of genes from many other animal models, as their genome sequences are sequenced or will be sequenced soon.


Positional Cloning Scurvy Microarray Screening Obvious Candidate Gene Positional Cloning Approach 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Funding for WKG came from the Center of Excellence for Genomic and Bioinformatics, Center of Excellence for Diseases of Connective Tissues at the University of Tennessee Health Science Center, and the Veterans Administration Medical Center, Memphis, TN; and from NIH (AR51190). Funding for WGB was from NIH AR43618 and CA43619 (CORE grant, The Jackson Laboratory). Funding for YT and DG came from NIH 5U01MH61971. We thank Dr. Vicki Park for providing human DNA samples and information on polymorphism. We thank Dr. Syamal K. Bhattacharya for measuring of mineral contents of the bones.


  1. Beamer, WG, Rosen, CJ, Bronson, RT, Gu, W-K, Donahue, LR,  et al. 2000Spontaneous fracture (sfx): a mouse genetic model of defective peripubertal bone formationBone27619626CrossRefGoogle Scholar
  2. Brooks, MB, Gu, W, Barnas, JL, Ray, J, Ray, K 2003A line 1 insertion in the factor IX gene segregates with mild hemophilia B in dogsMamm Genome14788795CrossRefGoogle Scholar
  3. Ellender, G, Gazelakis, T 1996Growth and bone remodeling in a scorbutic rat modelAust Dent J4197106Google Scholar
  4. Gu, W, Acland, GM, Langston, AA,  et al. 1998Identification of a RAPD marker linked to progressive rod-cone degeneration in dogsMamm Genom9740744CrossRefGoogle Scholar
  5. Gu, W, Brooks, M, Catalfamo, J, Ray, J, Ray, K 1999aTwo distinct mutations cause severe hemophilia B in two unrelated canine pedigreesThromb Haemost8212701275Google Scholar
  6. Gu, W, Ray, K, Pearce–Kelling, S, Baldwin, VJ, Langston, AA, et al. 1999bEvaluation of apolipoprotein H (APOH) gene as a positional candidate gene for progressive rod–cone degeneration (prcd) diseaseInvest Ophthalmol Vis Sci4012291237Google Scholar
  7. Gu, WJ, Li, XM, Edderkaoui, B, Strong, DD, Lau, KH,  et al. 2002aConstrution of a BAC contig for a 3 cM biologically significant region of mouse chromosome 1Genetica11419CrossRefGoogle Scholar
  8. Gu, W, Li, X, Lau, KH, Edderkaoui, B, Donahae, LR,  et al. 2002bGene expression between a congenic strain that contains a quantitative trait locus of high bone density from CAST/EiJ and its wild-type strain C57BL/6 JFunct Integr Genomics1375386CrossRefGoogle Scholar
  9. Gu, W, Li, XM, Roe, BA, Lau, KH, Edderkaoui, B,  et al. 2003Application of genomic resources and gene expression profiles to identify genes that regulate bone densityCurr Genomics475102Google Scholar
  10. Guerriero, C, Santis, D, Nocini, PF, Gotte, P, Armato, U 1995Tissue culture of adult human osteoblasts isolated from jaw bonesItal J Anat Embryol 100 Suppl18393Google Scholar
  11. Hasan, L, Vogeli, P, Neuenschwander, S, Stoll, P, Meijerink, E,  et al. 1999The L-gulono-gamma-lactone oxidase gene (GULO) which is a candidate for vitamin C deficiency in pigs maps to chromosome 14Anim Genet30309312CrossRefGoogle Scholar
  12. Horai, R, Saijo, S, Tanioka, H, Nakae, S, Sudo, K,  et al. 2000Development of chronic inflammatory arthropathy resembling rheumatoid arthritis in interleukin receptor antagonist-deficientJ Exp Med191313320CrossRefPubMedGoogle Scholar
  13. Horio, F, Hayashi, K, Mishima, T, Takemori, K, Oshima, I,  et al. 2001A newly established strain of spontaneously hypertensive rat with a defect of ascorbic acid biosynthesisLife Sci6918791890CrossRefGoogle Scholar
  14. Kawai, T, Nishikimi, M, Ozawa, T, Yagi, K 1992A missense mutation of L-gulono-gamma-lactone oxidase causes the inability of scurvy-prone osteogenic disorder rats to synthesize L-ascorbic acidJ Biol Chem2672197321976Google Scholar
  15. Kawai, K, Ito, H, Kubota, H, Takemori, K, Makino, S,  et al. 2003Changes in catecholamine metabolism by ascorbic acid deficiency in spontaneously hypertensive rats unable to synthesize ascorbic acidLife Sci7217171732CrossRefGoogle Scholar
  16. Kipp, DE, McElvain, M, Kimmel, DB, Akhter, MP, Robinson, RG,  et al. 1996Scurvy results in decreased collagen synthesis and bone density in the guinea pig animal modelBone18281288CrossRefGoogle Scholar
  17. Li, X, Gu, W, Masinde, G, Xu, S, Mohan, D,  et al. 2001Genetic control of the rate of wound healing in miceHeredity86668674Google Scholar
  18. Li, X, Masinde, GJ, Gu, W, Wergedal, J, Hamilton–Ulland, M,  et al. 2002Chromosomal regions harboring genes for the work to femur failure; in miceFunct Integr Genomics1367374CrossRefGoogle Scholar
  19. Maeda, N, Hagihara, H, Nakata, Y, Killer, S, Wilder, J,  et al. 2000Aortic wall damage in mice unable to synthesize ascorbic acidProc Natl Acad Sci USA97841846CrossRefGoogle Scholar
  20. Nakata, Y, Maeda, N 2002Vulnerable atherosclerotic plaque morphology in apolipoprotein E–deficient mice unable to make ascorbic acidCirculation10514851490CrossRefGoogle Scholar
  21. Nishikimi, M, Kawai, T, Yagi, K 1992Guinea pigs possess a highly mutated gene for L-gulono-gamma-lactone oxidase, the key enzyme for L-ascorbic acid biosynthesis missing in this speciesJ Biol Chem2672196721972Google Scholar
  22. Sakamoto, Y, Takano, Y 2002Morphological influence of ascorbic acid deficiency on endochondral ossification in osteogenic disorder Shionogi ratAnat Reg26893104CrossRefGoogle Scholar
  23. Sotiriou, S, Gispert, S, Cheng, J, Wang, Y, Chen, A,  et al. 2002Ascorbic-acid transporter Slc23al is essential for vitamin C transport into the brain and for perinatal survivalNat Med8514517CrossRefPubMedGoogle Scholar
  24. Tong, Y, Dumont, Y, Shen, SH, Quirion, R 1997Comparative developmental profile of the neuropeptide YY1 receptor gene and protein in the rat brainMol Brain Res48323332CrossRefGoogle Scholar
  25. Tumber, A, Meikle, MC, Hill, PA 2000Autocrine signals promote osteoblast survival in cultureJ Endocrinol167383390CrossRefGoogle Scholar
  26. Waterston, RH,  et al. 2002(Mouse Genome Sequencing Consortium) Initial sequencing and comparative analysis of the mouse genomeNature420520562CrossRefPubMedGoogle Scholar
  27. Wegger, I, Palludan, B 1994Vitamin C deficiency causes hematological and skeletal abnormalities during fetal development in swineJ Nutr124241248Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • Yan Jiao
    • 1
  • Xinmin Li
    • 2
  • Wesley G. Beamer
    • 3
  • Jian Yan
    • 1
  • Yiai Tong
    • 4
  • Daniel Goldowitz
    • 4
  • Bruce Roe
    • 5
  • Weikuan Gu
    • 1
    Email author
  1. 1.Department of Orthopedic Surgery–Campbell ClinicCenter of Genomics and Bioinformatics & Center of Diseases of Connective Tissues, University of Tennessee Health Science CenterTennesseeUSA
  2. 2.Functional Genomics FacilityUniversity of ChicagoChicagoUSA
  3. 3.The Jackson LaboratoryBar HarborUSA
  4. 4.Department of Anatomy and NeurobiologyUniversity of Tennessee Health Science CenterMemphisUSA
  5. 5.Department of Chemistry and BiochemistryUniversity of OklahomaNormanUSA

Personalised recommendations