Mammalian Genome

, Volume 15, Issue 9, pp 711–716 | Cite as

Phenotypic variability in Hey2 −/− mice and absence of HEY2 mutations in patients with congenital heart defects or Alagille syndrome

  • Andreas Fischer
  • Barbara Klamt
  • Nina Schumacher
  • Christiane Glaeser
  • Ingo Hansmann
  • Hartmut Fenge
  • Manfred Gessler
Article

Abstract

The genetic alterations leading to congenital heart defects (CHD) are still poorly understood. We and others have recently shown that in mice loss of Hey2 results in a high incidence of fatal ventricular and atrial septal defects, combined with tricuspid stenosis or atresia in some cases. The phenotype has been postulated to resemble human tetralogy of Fallot. Our analysis of CD1 outbred mice suggests that phenotypic consequences of Hey2 loss can be quite variable and dependent on modifier genes as we detected only isolated VSDs with lower prevalence and a significantly reduced mortality rate in this strain. Since Hey2 is one of the few Notch target genes, it is also conceivable that HEY2 mutations may account for cases of Alagille syndrome (AGS: variable combinations of heart, skeleton, eye, and facial malformations and cholestasis), in which the typical mutations of the Notch ligand JAG1 cannot be found. To clarify the role of HEY2 in human CHD and AGS, we screened by direct sequencing 23 children with CHD and 38 patients diagnosed with AGS, which lack mutations in the JAG1 gene. We found two types of silent changes in the coding region: a CTT→CTG transition in exon 3 and a CTG→CTC polymorphism in exon 5. Furthermore, a heterozygous SNP in the splice donor site of exon 4 was detected that is unlikely to disrupt splicing. Although the high incidence and variability of human congenital heart defects implies a multifactorial genetic basis, our results suggest that mutation of HEY2 is not a major contributing factor.

Notes

Acknowledgments

This work was supported by the Deutsche Forschungsgemeinschaft (DFG Ge 539/9). We thank Renate Kottke for skillful technical assistance.

References

  1. Alagille, D, Estrada, A, Hadchouel, M, Gautier, M, Odievre, M,  et al. 1987Syndromic paucity of interlobular bile ducts (Alagille syndrome or arteriohepatic dysplasia): review of 80 casesJ Pediatr11095200Google Scholar
  2. Donovan, J, Kordylewska, A, Jan, YN, Utset, MF 2002Tetralogy of Fallot and other congenital heart defects in Hey2 mutant miceCurr Biol1216051610CrossRefPubMedGoogle Scholar
  3. Eroglu, AG, Oztunc, F, Saltik, L, Bakari, S, Dedeoglu, S,  et al. 2003Evolution of ventricular septal defect with special reference to spontaneous closure rate, subaortic ridge and aortic valve prolapsePediatr Cardiol243135CrossRefPubMedGoogle Scholar
  4. Fischer, A, Leimeister, C, Winkler, C, Schumacher, N, Klamt, B,  et al. 2002Hey bHLH factors in cardiovascular developmentCold Spring Harb Symp Quant Biol676370PubMedGoogle Scholar
  5. Fischer, A, Schumacher, N, Maier, M, Sendtner, M, Gessler, M 2004The Notch target genes Hey1 and Hey2 are required for embryonic vascular developmentGenes Dev18901911CrossRefPubMedGoogle Scholar
  6. Gessler, M, Knobeloch, KP, Helisch, A, Amann, K, Schumacher, N,  et al. 2002Mouse gridlock: no aortic coarctation or deficiency, but fatal cardiac defects in Hey2 −/− miceCurr Biol1216011604CrossRefPubMedGoogle Scholar
  7. Giannakudis, J, Ropke, A, Kujat, A, Krajewska–Walasek, M, Hughes, H,  et al. 2001Parental mosaicism of JAG1 mutations in families with Alagille syndromeEur J Hum Genet9209216CrossRefPubMedGoogle Scholar
  8. Iso, T, Chung, G, Hamamori, Y, Kedes, L 2002HERP1 is a cell type-specific primary target of NotchJ Biol Chem27765986607CrossRefPubMedGoogle Scholar
  9. Li, L, Krantz, ID, Deng, Y, Genin, A, Banta, AB,  et al. 1997Alagille syndrome is caused by mutations in human Jagged1, which encodes a ligand for Notch1Nat Genet16243251CrossRefPubMedGoogle Scholar
  10. Maier, MM, Gessler, M 2000Comparative analysis of the human and mouse Hey1 promoter: Hey genes are new Notch target genesBiochem Biophys Res Commun275652660CrossRefPubMedGoogle Scholar
  11. McCright, B, Lozier, J, Gridley, T 2002A mouse model of Alagille syndrome: Notch2 as a genetic modifier of Jag1 haploinsufficiencyDevelopment12910751082PubMedGoogle Scholar
  12. McElhinney, DB, Krantz, ID, Bason, L, Piccoli, DA, Emerick, KM,  et al. 2002Analysis of cardiovascular phenotype and genotype–phenotype correlation in individuals with a JAG1 mutation and/or Alagille syndromeCirculation10625672574CrossRefPubMedGoogle Scholar
  13. Mujica, P, Morali, A, Vidailhet, M, Pierson, M, Gilgenkrantz, S 1989A case of Alagille’s syndrome with translocation (4;14) (q21;q21)Ann Genet32117119PubMedGoogle Scholar
  14. Oda, T, Elkahloun, AG, Pike, BL, Okajima, K, Krantz, ID,  et al. 1997Mutations in the human Jagged1 gene are responsible for Alagille syndromeNat Genet16235242CrossRefPubMedGoogle Scholar
  15. Ropke, A, Kujat, A, Graber, M, Giannakudis, J, Hansmann, I 2003Identification of 36 novel Jagged1 (JAG1) mutations in patients with Alagille syndromeHum Mutat21100CrossRefGoogle Scholar
  16. Sakata, Y, Kamei, CN, Nakagami, H, Bronson, R, Liao, JK,  et al. 2002Ventricular septal defect and cardiomyopathy in mice lacking the transcription factor CHF1/Hey2Proc Natl Acad Sci USA991619716202CrossRefPubMedGoogle Scholar
  17. Spinner, NB, Colliton, RP, Crosnier, C, Krantz, ID, Hadchouel, M,  et al. 2001Jagged1 mutations in alagille syndromeHum Mutat171833CrossRefPubMedGoogle Scholar
  18. Srivastava, D 2001Genetic assembly of the heart: implications for congenital heart diseaseAnnu Rev Physiol63451469CrossRefPubMedGoogle Scholar
  19. Steidl, C, Leimeister, C, Klamt, B, Maier, M, Nanda, I,  et al. 2000Characterization of the human and mouse HEY1, HEY2, and HEYL genes: cloning, mapping, and mutation screening of a new bHLH gene familyGenomics66195203CrossRefPubMedGoogle Scholar
  20. Tandon, R, Edwards, JE 1974Tricuspid atresia. A re-evaluation and classificationJ Thorac Cardiovasc Surg67530542PubMedGoogle Scholar
  21. Turner, SW, Hornung, T, Hunter, S 2002Closure of ventricular septal defects: a study of factors influencing spontaneous and surgical closureCardiol Young12357363PubMedGoogle Scholar
  22. Zhong, TP, Rosenberg, M, Mohideen, MA, Weinstein, B, Fishman, MC 2000Gridlock, an HLH gene required for assembly of the aorta in zebrafishScience28718201824CrossRefPubMedGoogle Scholar
  23. Zhong, TP, Childs, S, Leu, JP, Fishman, MC 2001Gridlock signalling pathway fashions the first embryonic arteryNature414216220CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • Andreas Fischer
    • 1
  • Barbara Klamt
    • 1
  • Nina Schumacher
    • 1
  • Christiane Glaeser
    • 2
  • Ingo Hansmann
    • 2
  • Hartmut Fenge
    • 3
  • Manfred Gessler
    • 1
  1. 1.Theodor-Boveri-Institute (Biocenter), Physiological Chemistry IUniversity of WuerzburgAm HublandGermany
  2. 2.Institute for Human Genetics and Medical Biology Halle/SaaleGermany
  3. 3.Department of Pediatric CardiologyUniversity Children’s HospitalMuensterGermany

Personalised recommendations