Mammalian Genome

, Volume 16, Issue 2, pp 112–119

Marker-assisted introgression of Trypanotolerance QTL in mice

  • O. Delphin Koudandé
  • Johan A. M. van Arendonk
  • Fuad Iraqi
Article

Abstract

A marker-assisted introgression (MAI) experiment was conducted to use genetic markers to transfer each of the three trypanotolerance QTL from a donor mouse strain, C57BL/6, into a recipient mouse strain, A/J. We used a backcross strategy that consisted of selecting two lines, each carrying two of the donor QTL alleles through the backcross (BC) phase. At the fourth BC generation, single-carrier animals were selected for the production of homozygous animal in the intercross phase. The QTL regions (QTLR) were located on chromosomes MMU1, MMU5, and MMU17. Groups of mice with different genotypes and the parental lines were subjected to a challenge with Trypanosoma congolense. The results show that trypanotolerance QTL was successfully moved into the recipient background genotype, yielding a longer survival time. The mean estimated survival time was 57.9, 49.5, and 46.8 days for groups of mice carrying the donor QTL on MMU1, MMU5, and MMU17 on A/J background. The mean estimated survival time was 29.7 days for the susceptible A/J line and 68.8 days for the resistant C57BL/6 line. The estimated QTLR effects are close to 30% smaller than those in the original mapping population which was likely caused by the difference in the background on which the effects of QTLR are tested. This is the first report of successful marker-assisted introgression of QTL in animals. It is experimental proof of the use of genetic markers for marker-assisted introgression in animal breeding.

References

  1. Vries, JN, Wietsma, WA, Vries, T 1992Introgression of leaf blight resistance from Allium roylei Steam into onion (A. cepo L.)Euphytica62127133CrossRefGoogle Scholar
  2. Dietrich, WF, Lander, ES, Smith, JS, Moser, AR, Gould, KA,  et al. 1993Genetic identification of Mom-1, a major modifier locus affecting Min-induced intestinal neoplasia in the mouseCell75631639CrossRefPubMedGoogle Scholar
  3. Doko, A, Guedegbe, B, Baelmans, R, Demey, F, N’Diaye, A,  et al. 1991Trypanosomiasis in different breeds of cattle from BéninVet Parasitol4017CrossRefPubMedGoogle Scholar
  4. Hanotte, O, Ronin, Y, Agaba, M, Nilsson, P, Gelhaus, A,  et al. 2003Mapping of quantitative trait loci controlling trypanotolerance in a cross of tolerant West African N’Dama and susceptible East African Boran cattleProc Natl Acad Sci USA10074437448CrossRefPubMedGoogle Scholar
  5. Ikeda, A, Zheng, QY, Rosenstiel, P, Madatu, T, Zuberi, AR,  et al. 1999Genetic modification of hearing in tubby mice: evidence for the existence of a major gene (moth1) which protects tubby mice from hearing lossHum Mol Genet817611767CrossRefPubMedGoogle Scholar
  6. Iraqi, F, Clapcott, SJ, Kumari, P, Haley, CS, Kemp, SJ,  et al. 2000Fine mapping of trypanosomiasis resistance loci in murine advanced intercross linesMamm Genome11645648CrossRefPubMedGoogle Scholar
  7. Kalbfleisch, JD, Prentice, RL 1980The statistical analysis of failure time dataJohn Wiley & SonsNew YorkGoogle Scholar
  8. Kemp, SJ, Darvasi, A, Soller, M, Teale, AJ 1996Genetic control of resistance to trypanosomiasisVet Immunol Immunopathol54239243CrossRefPubMedGoogle Scholar
  9. Kemp, SJ, Iraqi, F, Darvasi, A, Soller, M, Teale, AJ 1997Localization of genes controlling resistance to trypanosomiasis in miceNat Genet16194196CrossRefPubMedGoogle Scholar
  10. Khrustaleva, LI, Kik, C 2000Introgression of Allium fistulosum into A. cepa mediated by A.royleiTheor Appl Genet1001726CrossRefGoogle Scholar
  11. Koudandé, OD, Thomson, PC, Arendonk, JAM 1999A model for population growth of laboratory animals subjected to marker-assisted introgression: how many animals do we need? Heredity821624CrossRefPubMedGoogle Scholar
  12. Koudandé, OD, Iraqi, F, Thomson, PC, Teale, AJ, Arendonk, JAM 2000Strategies to optimize marker-assisted introgression of multiple QTLMamm Genome11145150CrossRefPubMedGoogle Scholar
  13. Kristjanson, PM, Swallow, BM, Rowlands, GJ, Kraska, RL, Leeuw, PN 1999Measuring the costs of African animal trypanosomiasis, the potential benefits of control and returns to researchAgric Syst597998CrossRefGoogle Scholar
  14. Lim, K-B, Chung, J-D, Kronenburg, CE, Ramana, MS, Jong, JH,  et al. 2000Introgression of Lilium rubellum Baker chromosomes into L. longiflorym Thunb.: a genome painting study of the F1 hybrid, BC1 and BC2 progeniesChromosome Res8119125CrossRefPubMedGoogle Scholar
  15. Markel, P, Shu, P, Ebeling, C, Carlson, GA, Nagle, DI,  et al. 1997Theoretical and empirical issues for marker-assisted breeding of congenic mouse strainsNat Genet17280283PubMedGoogle Scholar
  16. Masake, RA, Musoke, AJ, Nantulya, VM 1983Specific antibody responses to the variable surface glycoproteins of Trypanosoma congolense in infected cattleParasite Immunol5345355PubMedGoogle Scholar
  17. Moore, KJ, Nagle, DL 2000Complex trait analysis in the mouse: the strengths, the limitations and the promise yet to comeAnnu Rev Genet34653686CrossRefPubMedGoogle Scholar
  18. Morrison, WI, Roelants, GE, Mayor–Withey, KS, Murray, M 1978Susceptibility of inbred strains of mice to Trypanosoma congolense: correlation with changes in spleen lymphocyte populationsClin Exp Immunol322540PubMedGoogle Scholar
  19. Mouse Genome Database (MGD) (1997) Mouse Genome Informatics, The Jackson Laboratory, Bar Harbor, ME (URL:http://www.informatics.jax.org/ccr/)
  20. Murray, M, Trail, JCM 1984Genetic resistance to animal trypanosomiasis in AfricaPrev Vet Med2541551CrossRefGoogle Scholar
  21. Oertel, C, Matzk, F 1999Introgression of crown rust resistance for Festuca spp. into LoliummultiflorumPlant Breed118491496CrossRefGoogle Scholar
  22. Roberts, CJ, Gray, AJ 1973Studies on trypanosome-resistant cattle II. The effects of trypanosomiasis on N’Dama, Muturu and Zebu cattleTrop Anim Health Prod5220233PubMedGoogle Scholar
  23. Roelants, GE 1986Natural resistance to African trypanosomiasisParasite Immunol8110PubMedGoogle Scholar
  24. Sambrook, J, Fritsch, EF, Maniatis, T 1989Molecular Cloning: A Laboratory Manual, 2nd ed.Cold Spring Harbor Laboratory PressCold Spring Harbor, NY:Google Scholar
  25. SAS1990User’s Guide, Statistics, Version 6.0, 4th ed.SAS Inst., IncCary, NCGoogle Scholar
  26. Soller, M, Plotkin–Hazan, J 1977The use of marker alleles for the introgression of linked quantitative allelesTheor Appl Genet51133137Google Scholar
  27. Stam, P, Zeven, AC 1981The theoretical proportion of the donor genome in near-isogenic lines of self-fertilizers bred by backcrossingEuphytica30227238CrossRefGoogle Scholar
  28. Teale, AJ 1993Improving control of livestock disease. Animal biotechnology in the Consultative Group for International Agricultural ResearchBioscience43475483Google Scholar
  29. Teale, A, Agaba, M, Clapcott, S, Gelhaus, A, Haley, C,  et al. 1999Resistance to trypanosomiasis: of markers, genes and mechanismsArch Tierz Dummerstorf423641Google Scholar
  30. Trail, JCM, d’Ieteren, GDM, Teale, AJ 1989Trypanotolerance and the value of conserving livestock genetic resourcesGenome31805812PubMedGoogle Scholar
  31. Yancovich, A, Levin, I, Cahanar, A, Hillel, J 1996Introgression of the avian naked neck gene assisted by DNA fingerprintsAnim Genet27149155Google Scholar
  32. Young, ND, Tanksley, SD 1989RFLP analysis and size of chromosomal segments retained around the Tm-2 locus in tomato during backcross breedingTheor Appl Genet77353359CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • O. Delphin Koudandé
    • 1
  • Johan A. M. van Arendonk
    • 1
  • Fuad Iraqi
    • 2
  1. 1.Animal Breeding and Genetics Group, Wageningen Institute of Animal SciencesWageningen UniversityAH WageningenThe Netherlands
  2. 2.International Livestock Research Institute (ILRI)NairobiKenya

Personalised recommendations