Mammalian Genome

, Volume 15, Issue 4, pp 323–333 | Cite as

Intragenic deletion in the gene encoding L-gulonolactone oxidase causes vitamin C deficiency in pigs

  • Lara Hasan
  • Peter VögeliEmail author
  • Peter Stoll
  • Špela Špilar Gerald KramerStranzinger
  • Stefan Neuenschwander


The absence of L-ascorbic acid (L-AA, or AA) synthesis in scurvy-prone organisms, including humans, other primates, guinea pigs, and flying mammals, was traced to the lack of L-gulonolactone oxidase (GULO) activity. GULO is a microsomal enzyme that catalyzes the terminal step in the biosynthesis of L-AA. Clinical cases of scurvy were described in a family of Danish pigs. This trait is controlled by a single autosomal recessive allele designated od (osteogenic disorder). Here we demonstrate that the absence of GULO activity and the associated vitamin C deficiency in od/od pigs is due to the occurrence of a 4.2-kbp deletion in the GULO gene. This deletion includes 77 bp of exon VIII, 398 bp of intron 7 and 3.7 kbp of intron 8, which leads to a frame shift. The mutant protein is truncated to 356 amino acids, but only the first 236 amino acids are identical to the wild-type GULO protein. In addition, the od allele seems to be less expressed in deficient and heterozygous pigs compared with the normal allele in heterozygous and wild-type animals as determined by ribonuclease protection assay. We also developed a DNA-based test for the diagnosis of the deficient allele. However, we failed to identify the mutated allele in other pig populations.


Protection Assay Microsomal Enzyme Recessive Allele Ribonuclease Protection Assay Autosomal Recessive Allele 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    August, PR, Flickinger, MC, Sherman, DH 1994Cloning and analysis of a locus (mcr) involved in mitomycin C resistance in Streptomyces lavendulae.J Bacteriol17644484454Google Scholar
  2. 2.
    Birney, EC, Jenness, R, Ayaz, KM 1976Inability of bats to synthesise L-ascorbic acid.Nature260626628Google Scholar
  3. 3.
    Brandsch, R, Hinkkanen, AE, Mauch, L, Nagursky, H, Decker, K 19876-Hydroxy-D-nicotine oxidase of Arthrobacter oxidans. Gene structure of the flavoenzyme and its relationship to 6-hydroxy-L-nicotine oxidase.Eur J Biochem167315320Google Scholar
  4. 4.
    Buettner, GR, Jurkiewicz, BA 1996Chemistry and biochemistry of ascorbic acid.Cadenas, EPacker, L eds. Handbook of AntioxidantsDekkerNew York91115Google Scholar
  5. 5.
    Burns, JJ 1957Missing step in man, monkey and guinea pig required for the biosynthesis of L-ascorbic acid.Nature180553.Google Scholar
  6. 6.
    Burns, JJ, Mosbach, EH 1956Further observations on the biosynthesis of L-ascorbic acid from D-glucose in the rat.J Biol Chem227107111Google Scholar
  7. 7.
    Byers, PH 2002Killing the messenger: new insights into nonsense-mediated mRNA decay.J Clin Invest10936Google Scholar
  8. 8.
    Chatterjee, IB 1973Evolution and the biosynthesis of ascorbic acid.Science18212711272Google Scholar
  9. 9.
    Chatterjee, IB, Ghosh, JJ, Ghosh, NC, Guha, BC 1958Effect of cyanide on the biosynthesis of ascorbic acid by an enzyme preparation from goat-liver tissue.Biochem J70509515Google Scholar
  10. 10.
    Chatterjee, IB, Majumder, AK, Nandi, BK, Subramanian, N 1975Synthesis and some major functions of vitamin C in animals.Ann N Y Acad Sci2582447Google Scholar
  11. 11.
    Ching, S, Mahan, DC, Moreau, R, Dabrowski, K 2003Modification of analytical procedures for determining vitamin C enzyme (L-gulonolactone oxidase) activity in swine liver.J Nutr Biochem14139146Google Scholar
  12. 12.
    Chirgwin, JM, Przybyla, AE, MacDonald, RJ, Rutter, WJ 1979Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease.Biochemistry1852945299Google Scholar
  13. 13.
    Chomczynski, P, Sacchi, N 1987Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction.Anal Biochem162156159Google Scholar
  14. 14.
    Dabrowski, K, Hinterleitner, S 1989Applications of a simultaneous assay of ascorbic acid, dehydroascorbic acid and ascorbic sulphate in biological materials.Analyst1148387Google Scholar
  15. 15.
    Devereux, J, Haeberli, P, Smithies, O 1984A comprehensive set of sequence analysis programs for the VAX.Nucleic Acids Res12387395Google Scholar
  16. 16.
    Dittrich, H, Kutchan, TM 1991Molecular cloning, expression, and induction of berberine bridge enzyme, an enzyme essential to the formation of benzophenanthridine alkaloids in the response of plants to pathogenic attack.Proc Natl Acad Sci USA8899699973Google Scholar
  17. 17.
    Hasan, L, Vögeli, P, Neuenschwander, S, Stoll, P, Meijerink, E,  et al. 1999The L-gulono-gamma-lactone oxidase gene (GULO) which is a candidate for vitamin C deficiency in pigs maps to chromosome 14.Anim Genet30309312Google Scholar
  18. 18.
    Head, KA 1998Ascorbic acid in the prevention and treatment of cancer.Altern Med Rev3174186Google Scholar
  19. 19.
    Hentze, MW, Kulozik, AE 1999A perfect message: RNA surveillance and nonsense-mediated decay.Cell96307310Google Scholar
  20. 20.
    Hitomi, K, Tsukagoshi, N 1996Role of ascorbic acid in modulation of gene expression.Subcell Biochem254156Google Scholar
  21. 21.
    Jensen, PT, Basse, A, Nielsen, DH, Larsen, H 1983Congenital ascorbic acid deficiency in pigs.Acta Vet Scand24392402PubMedGoogle Scholar
  22. 22.
    Kawai, T, Nishikimi, M, Ozawa, T, Yagi, K 1992A missense mutation of L-gulono-gamma-lactone oxidase causes the inability of scurvy-prone osteogenic disorder rats to synthesize L-ascorbic acid.J Biol Chem2672197321976PubMedGoogle Scholar
  23. 23.
    Kenney, WC, Edmondson, DE, Singer, TP 1976Identification of the covalently bound flavin of L-gulono-gamma-lactone oxidase.Biochem Biophys Res Commun7111941200PubMedGoogle Scholar
  24. 24.
    Kiuchi, K, Nishikimi, M, Yagi, K 1982Purification and characterization of L-gulonolactone oxidase from chicken kidney microsomes.Biochemistry2150765082PubMedGoogle Scholar
  25. 25.
    Koshizaka, T, Nishikimi, M, Ozawa, T, Yagi, K 1988Isolation and sequence analysis of a complementary DNA encoding rat liver L-gulono-gamma-lactone oxidase, a key enzyme for L-ascorbic acid biosynthesis.J Biol Chem26316191621PubMedGoogle Scholar
  26. 26.
    Li, S, Wilkinson, MF 1998Nonsense surveillance in lymphocytes?Immunity8135141PubMedGoogle Scholar
  27. 27.
    Lynch, SM, Gaziano, JM, Frei, B 1996Ascorbic acid and atherosclerotic cardiovascular disease.Subcell Biochem25331367PubMedGoogle Scholar
  28. 28.
    Maeda, N, Hagihara, H, Nakata, Y, Hiller, S, Wilder, J,  et al. 2000Aortic wall damage in mice unable to synthesize ascorbic acid.Proc Natl Acad Sci USA97841846CrossRefPubMedGoogle Scholar
  29. 29.
    Maquat, LE 2002Nonsense-mediated mRNA decay.Curr Biol12R196R197CrossRefPubMedGoogle Scholar
  30. 30.
    Möller, S, Croning, MD, Apweiler, R 2001Evaluation of methods for the prediction of membrane spanning regions.Bioinformatics17646653PubMedGoogle Scholar
  31. 31.
    Mount, SM 1982A catalogue of splice junction sequences.Nucleic Acids Res10459472PubMedGoogle Scholar
  32. 32.
    Neuenschwander, S, Roberts, CT, Roith, Le 1995Growth inhibition of MCF-7 breast cancer cells by stable expression of an insulin-like growth factor I receptor antisense ribonucleic acid.Endocrinology13642984303CrossRefPubMedGoogle Scholar
  33. 33.
    Nishikimi, M, Kawai, T, Yagi, K 1992Guinea pigs possess a highly mutated gene for L-gulono-gamma-lactone oxidase, the key enzyme for L-ascorbic acid biosynthesis missing in this species.J Biol Chem2672196721972PubMedGoogle Scholar
  34. 34.
    Nishikimi, M, Fukuyama, R, Minoshima, S, Shimizu, N, Yagi, K 1994Cloning and chromosomal mapping of the human nonfunctional gene for L-gulono-gamma-lactone oxidase, the enzyme for L-ascorbic acid biosynthesis missing in man.J Biol Chem2691368513688PubMedGoogle Scholar
  35. 35.
    Roe, JH, Kuether, CA 1943The determination of ascorbic acid in whole blood and urine through the 2,4-dinitro-phenylhydrazine derivative of dehydroascorbic acid.J Biol Chem147399407Google Scholar
  36. 36.
    Ronchetti, IP, Quaglino, G, Bergamini, G 1996Ascorbic acid and connective tissue.Subcell Biochem25249264PubMedGoogle Scholar
  37. 37.
    Sambrook, J, Fritsch, EF, Maniatis, T 1989Molecular Cloning: A Laboratory Manual, 2nd ed.Cold Spring Harbor Laboratory PressCold Spring Harbor, NYGoogle Scholar
  38. 38.
    Schwager, J, Schulze, J 1997Influence of ascorbic acid on the response to mitogens and interleukin production of porcine lymphocytes.Int J Vitam Nutr Res671016PubMedGoogle Scholar
  39. 39.
    Schwager, J, Schulze, J 1998aDependence of growth, bone metabolism and functions of polymorphonuclear leukocytes on ascorbic acid in pigs.Int J Vitam Nutr Res684858Google Scholar
  40. 40.
    Schwager, J, Schulze, J 1998bModulation of interleukin production by ascorbic acid.Vet Immunol Immunopathol644557CrossRefGoogle Scholar
  41. 41.
    Tsao, CS, Young, M 1989Effect of exogenous ascorbic acid intake on biosynthesis of ascorbic acid in mice.Life Sci4515531557PubMedGoogle Scholar
  42. 42.
    Tsao, CS, Young, M 1990Enzymatic formation of ascorbic acid in liver homogenate of mice fed dietary ascorbic acid.In Vivo4167169PubMedGoogle Scholar
  43. 43.
    Vögeli, P, Bolt, R, Fries, R, Stranzinger, G 1994Co-segregation of the malignant hyperthermia and the Arg615-Cys615 mutation in the skeletal muscle calcium release channel protein in five European Landrace and Pietrain pig breeds.Anim Genet25 Suppl 15966PubMedGoogle Scholar
  44. 44.
    Weiser, H, Schlachter, M, Probst, HP, Korman, AW 1992The relevance of ascorbic acid for bone metabolism.Wenk, C eds. Ascorbic Acid in Domestic Animals,Hoffmann-La RocheBasle, Switzer-land7395Google Scholar

Copyright information

© Springer-Verlag New York Inc. 2004

Authors and Affiliations

  • Lara Hasan
    • 1
  • Peter Vögeli
    • 1
    Email author
  • Peter Stoll
    • 2
  • Špela Špilar Gerald KramerStranzinger
    • 1
  • Stefan Neuenschwander
    • 1
  1. 1.Institute of Animal Sciences, Tannenstrasse 1, ETH-Zentrum, CH-8092 ZurichSwitzerland
  2. 2.Swiss Federal Research Station for Animal Production, CH-1725 PosieuxSwitzerland

Personalised recommendations