Advertisement

Mammalian Genome

, Volume 15, Issue 2, pp 83–99 | Cite as

A large-sample QTL study in mice: I. Growth

  • Joao L. Rocha
  • Eugene J. Eisen
  • L. Dale Van Vleck
  • Daniel Pomp
Article

Abstract

By use of long-term selection lines for high and low growth, a large-sample (n = ~1,000 F2) experiment was conducted in mice to further understand the genetic architecture of complex polygenic traits. In combination with previous work, we conclude that QTL analysis has reinforced classic polygenic paradigms put in place prior to molecular analysis. Composite interval mapping revealed large numbers of QTL for growth traits with an exponential distribution of magnitudes of effects and validated theoretical expectations regarding gene action. Of particular significance, large effects were detected on Chromosome (Chr) 2. Regions on Chrs 1, 3, 6, 10, 11, and 17 also harbor loci with significant contributions to phenotypic variation for growth. Despite the large sample size, average confidence intervals of ~20 cM exhibit the poor resolution for initial estimates of QTL location. Analysis with genome-wide and chromosomal polygenic models revealed that, under certain assumptions, large fractions of the genome may contribute little to phenotypic variation for growth. Only a few epistatic interactions among detected QTL, little statistical support for gender-specific QTL, and significant age effects on genetic architecture were other primary observations from this study.

Keywords

Epistatic Interaction Growth Trait Dominance Effect Directional Dominance Body Weight Trait 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

We gratefully acknowledge Mary Ann Cushman, Stephenie Foster, and Grady Beck for collection of genotypic data. We appreciate the assistance of James Specht and Steven Kachman in statistical analyses and use of QTL detection computer packages. We have also benefited greatly from useful discussions with Jerry Taylor, Mark Thallman, and Gary Rohrer, and from constructive reviews of a previous version of this manuscript by Bill Hill and Merlyn Nielsen. J.L. Rocha acknowledges the support of the Portuguese Foundation for Science and Technology. This research is a contribution of the University of Nebraska Agricultural Research Division (Lincoln, nab.; Journal Series No. 14110) and the North Carolina Agricultural Research Service, and was supported in part by funds provided through the Hatch Act. This research was also partially based upon work supported by the National Science Foundation under Grant No. 0091900 (Nebraska EPSCOR infrastructure improvement grant).

References

  1. 1.
    Agulnik, II, Agulnik, SI, Saatkamp, BD, Silver, LM 1998Sex-specific modifiers of tail development in mice heterozygous for the brachyury (T) mutation.Mamm Genome9107110CrossRefPubMedGoogle Scholar
  2. 2.
    Allison, DB, Fernandez, JR, Heo, M, Zhu, S, Etzel, C,  et al. 2002Bias in estimates of quantitative-trait-locus effect in genome scans: demonstration of the phenomenon and a method-of-moments procedure for reducing bias.Am J Hum Genet70575585CrossRefPubMedGoogle Scholar
  3. 3.
    Andersson, L 1998Identification and cloning of trait genes.Clark, AJ eds. Animal Breeding Technology for the 21st Century,Harwood Academic PublishersAmsterdam, The Netherlands103117Google Scholar
  4. 4.
    Anunciado, RV, Ohno, T, Mori, M, Ishikawa, A, Tanaka, S,  et al. 2000Distribution of body weight, blood insulin and lipid levels in the SMXA recombinant inbred strains and the QTL analysis.Exp Anim (Tokyo)49217224CrossRefGoogle Scholar
  5. 5.
    Anunciado, RV, Nishimura, M, Mori, M, Ishikawa, A, Tanaka, S,  et al. 2001Quantitative trait loci for body weight in the intercross between SM/J and A/3 mice.Exp Anim (Tokyo)50319324CrossRefGoogle Scholar
  6. 6.
    Atchley, WR, Zhu, J 1997Developmental quantitative genetics, conditional epigenetic variability and growth in mice.Genetics147765776Google Scholar
  7. 7.
    Basten, CJ, Weir, BS, Zeng, Z-B 2001QTL Cartographer, version 1.15North Carolina State UniversityRaleigh, NCGoogle Scholar
  8. 8.
    Beavis, WD 1998Power, precision, and accuracy.Beavis, AH eds. Molecular Dissection of Complex TraitsCRC PressBoca Raton, Fla145162Google Scholar
  9. 9.
    Bost, B, Dillmann, C, de Vienne, D 1999Fluxes and metabolic pools as model traits for quantitative genetics. I. The L-shaped distribution of gene effects.Genetics15320012012PubMedGoogle Scholar
  10. 10.
    Botstein, D, White, RL, Skolnick, M, Davis, RW 1980Construction of a genetic linkage map in man using restriction fragment length polymorphisms.Am J Hum Genet32314324PubMedGoogle Scholar
  11. 11.
    Brockinann, GA, Bevova, MR 2002Using mouse models to dissect the genetics of obesity.Trends Genet18367376CrossRefPubMedGoogle Scholar
  12. 12.
    Brockmann, GA, Renne, U, Kopplow, K, Das, P 1998aGenetic markers for the detection of quantitative trait loci with special consideration of body weight and fat.Acta Theriol.5362Google Scholar
  13. 13.
    Brockmann, GA, Haley, CS, Renne, U, Knott, SA, Schwerin, M 1998bQuantitative trait loci affecting body weight and fatness from a mouse line selected for extreme high growth.Genetics150369381Google Scholar
  14. 14.
    Brockmann, GA, Kratzsch, J, Haley, CS, Renne, U, Schwerin, M,  et al. 2000Single QTL effects, epistasis, and pleiotropy account for two-thirds of the phenotypic F2 variance of growth and obesity in DU6i x DBA/2 mice.Genome Res1019411957PubMedGoogle Scholar
  15. 15.
    Carter, TC, Falconer, DS 1951Stocks for detecting linkage in the mouse and the theory of their design.J Genet50307323Google Scholar
  16. 16.
    Cheverud, JM 2000Detecting epistasis among quantitative trait loci.Wolf, JBBrodie, ED IIIWade, MJ eds. Epistasis and the Evolutionary ProcessOxford University PressOxford, UK5881Google Scholar
  17. 17.
    Cheverud, JM, Routman, EJ, Duarte, FA, van Swinderen, B, Cothran, K,  et al. 1996Quantitative trait loci for murine growth.Genetics14213051319PubMedGoogle Scholar
  18. 18.
    Cheverud, JM, Vaughn, TT, Pletscher, LS, Peripato, AC, Adams, ES,  et al. 2001Genetic architecture of adiposity in the cross of LG/J and SM/J inbred mice.Mamm Genome12312CrossRefPubMedGoogle Scholar
  19. 19.
    Churchill, GA, Doerge, RW 1994Empirical threshold values for quantitative trait mapping.Genetics138963971PubMedGoogle Scholar
  20. 20.
    Clark, AG 2000Limits to prediction of phenotypes from knowledge of genotypes.Evol Biol32205224CrossRefGoogle Scholar
  21. 21.
    Collins, AC, Martin, IC, Kirkpatrick, BW 1993Growth quantitative trait loci (QTL) on mouse chromosome 10 in a Quackenbush-Swiss × C57BL/6J backcross.Mamm Genome4454458Google Scholar
  22. 22.
    Corva, PM, Medrano, JF 2001Quantitative trait loci (QTLs) mapping for growth traits in the mouse: a review.Genet Sel Evol33105132CrossRefPubMedGoogle Scholar
  23. 23.
    Corva, PM, Horvat, S, Medrano, JF 2001Quantitative trait loci affecting growth in high growth (hg) mice.Mamm Genome12284290PubMedGoogle Scholar
  24. 24.
    Darvasi, A, Soller, M 1994Optimum spacing of genetic markers for determining linkage between marker loci and quantitative trait loci.Theor Appl Genet89351357Google Scholar
  25. 25.
    Dickerson, GE 1973Inbreeding and heterosis in animals.Lush, Jay L eds. Proc Animal Breeding and Genetics SymposiumAmerican Society of Animal ScienceChampaign, Illinois5477Google Scholar
  26. 26.
    Drudik, DK, Pomp, D, Zeng, Z-B, Eisen, EJ 1995Identification of major genes controlling body weight and fat percentage on mouse chromosome 2.J Anim Sci73110(abst)Google Scholar
  27. 27.
    Eisen, EJ, Bakker, H, Nagai, J 1977Body composition and energetic efficiency in two lines of mice selected for rapid growth rate and their F1 crosses.Theor Appl Genet492134Google Scholar
  28. 28.
    Falconer, DS, Mackay, TF 1996Introduction to Quantitative GeneticsLongman Group Ltd.Harlow, UKGoogle Scholar
  29. 29.
    Frary, A, Nesbitt, TC, Frary, A, Grandillo, S, Knaap, E,  et al. 2000 fw2.2: a quantitative trait locus key to the evolution of tomato fruit size.Science2898588CrossRefPubMedGoogle Scholar
  30. 30.
    Georges, M 1998Mapping genes underlying production traits in livestock.Georges, AJ eds. Animal Breeding Technology for the 21st Century,Harwood Academic PublishersAmsterdam, The Netherlands77101Google Scholar
  31. 31.
    Goodnight, CJ 2000Quantitative trait loci and gene interaction: the quantitative genetics of meta-populations.Heredity84587598CrossRefPubMedGoogle Scholar
  32. 32.
    Goring, HH, Terwilliger, JD, Blangero, J 2001Large upward bias in estimation of locus-specific effects from genome-wide scans.Am J Hum Genet6913571369CrossRefPubMedGoogle Scholar
  33. 33.
    Green, MC 1989Catalog of mutant genes and polymorphic loci.Green, MFLyon, AG eds. Genetic Variants and Strains of the Laboratory Mouse,Oxford University PressOxford, UK12403Google Scholar
  34. 34.
    Hackett, CA 1997Model diagnostics for fitting QTL models to trait and marker data by interval mapping.Heredity79319328CrossRefGoogle Scholar
  35. 35.
    Hanrahan, JP, Eisen, EJ, Legates, JE 1973Effects of population size and selection intensity on short-term response to selection for post-weaning gain in mice.Genetics73513530PubMedGoogle Scholar
  36. 36.
    Hayes, B, Goddard, ME 2001The distribution of the effects of genes affecting quantitative traits in livestock.Genet Sel Evol33209229CrossRefPubMedGoogle Scholar
  37. 37.
    Hirayama, I, Yi, Z, Izumi, S, Arai, I, Suzuki, W,  et al. 1999Genetic analysis of obese diabetes in the TSOD mouse.Diabetes4811831191PubMedGoogle Scholar
  38. 38.
    Horstgen-Schwark, G, Eisen, EJ, Saxton, AM, Bandy, TR 1984Diallel cross among lines of mice selected for litter size and body weight:growth traits.Z Tierz Züchtungsbiol10196111Google Scholar
  39. 39.
    Ishikawa, A, Matsuda, Y, Namikawa, T 2000Detection of quantitative trait loci for body weight at 10 weeks from Philippine wild mice.Mamm Genome11824830Google Scholar
  40. 40.
    Jiang, C, Zeng, Z-B 1995Multiple trait analysis of genetic mapping for quantitative trait loci.Genetics14011111127PubMedGoogle Scholar
  41. 41.
    Jinks, JL 1977Discussion of Dr. Eaves’ paper.J R Statist Soc Ser A140352353Google Scholar
  42. 42.
    Kao, C-H, Zeng, Z-B, Teasdale, RD 1999Multiple interval mapping for quantitative trait loci.Genetics15212031216PubMedGoogle Scholar
  43. 43.
    Keightley, PD, Knott, SA 1999Testing the correspondence between map positions of quantitative trait loci.Genet Res74323328CrossRefGoogle Scholar
  44. 44.
    Keightley, PD, Hardge, T, May, L, Bulfleld, G 1999A genetic map of quantitative trait loci for body weight in the mouse.Genetics142227235Google Scholar
  45. 45.
    Kirkpatrick, BW, Mengelt, A, Schulman, N, Martin, IC 1998Identification of quantitative trait loci for prolificacy and growth in mice.Mamm Genome997102PubMedGoogle Scholar
  46. 46.
    Kluge, R, Giesen, K, Bahrenberg, G, Plum, L, Ortlepp, JR,  et al. 2000Quantitative trait loci for obesity and insulin resistance (Nob1, Nob2) and their interaction with the leptin receptor allele (Lepr A720T/T1044I ) in New Zealand obese mice.Diabetologia4315651572PubMedGoogle Scholar
  47. 47.
    Knott, SA, Marklund, L, Haley, CS, Andersson, K, Davies, W,  et al. 1998Multiple marker mapping of quantitative trait loci in a cross between outbred wild boar and Large White pigs.Genetics14910691080Google Scholar
  48. 48.
    Lander, ES, Botstein, D 1989Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps.Genetics121185199PubMedGoogle Scholar
  49. 49.
    Legates, JE 1969Direct and correlated responses to selection in mice.Legates, R eds. Genetics Lectures, vol. 1,Oregon State University PressCorvallis, Oregon149165Google Scholar
  50. 50.
    Leiter, EH, Reifsnyder, PC, Flurkey, K, Partke, H-J, Junger, E,  et al. 1998Deleterious synergism by both parental genomes contributes to diabetogenic thresholds.Diabetes4712871295PubMedGoogle Scholar
  51. 51.
    Lembertas, AV, Perusse, L, Chagnon, YC, Fisler, JS, Warden, CH,  et al. 1997Identification of an obesity quantitative trait locus on mouse chromosome 2 and evidence of linkage to body fat and insulin on the human homologous region 20q.J Clin Invest10012401247PubMedGoogle Scholar
  52. 52.
    Lincoln, SE, Lander, ES 1992Systematic detection of errors in genetic linkage data.Genomics14604610PubMedGoogle Scholar
  53. 53.
    Lincoln, SE, Daly, M, Lander, ES 1992Constructing genetic maps with MAPMAKER/EXP 3.0, 3rd ed.Whitehead Institute Technical ReportCambridge, MassGoogle Scholar
  54. 54.
    Mackay, TF 2001Quantitative trait loci in Drosophila.Nat Rev Genet21120CrossRefPubMedGoogle Scholar
  55. 55.
    Malik, RC 1984Genetic and physiological aspects of growth, body composition and feed efficiency in mice: a review.J Anim Sci58577590PubMedGoogle Scholar
  56. 56.
    Masinde, GL, Li, X, Gu, W, Davidson, H, Ulland, MH,  et al. 2002Quantitative trait loci (QTL) for lean body mass and body length in MRL/MPJ and SJL/J F2 mice.Funct Integr Genomics298104CrossRefPubMedGoogle Scholar
  57. 57.
    Mehrabian, M, Wen, P-Z, Fisler, J, Davis, RC, Lusis, AJ 1998Genetic loci controlling body fat, lipoprotein metabolism, and insulin levels in a multifactorial mouse model.J Clin Invest10124852496PubMedGoogle Scholar
  58. 58.
    Melchinger, AE, Utz, HF, Schon, CC 1998Quantitative trait locus (QTL) mapping using different testers and independent population samples in maize reveals low power of QTL detection and large bias in estimates of QTL effects.Genetics149383403PubMedGoogle Scholar
  59. 59.
    Moody, DE, Pomp, D, Nielsen, MK, Van Vleck, LD 1999Identification of quantitative trait loci influencing traits related to energy balance in selection and inbred lines of mice.Genetics152699711Google Scholar
  60. 60.
    Moore, KJ, Nagle, DL 2000Complex trait analysis in the mouse: the strengths, the limitations and the promise yet to come.Annu Rev Genet34653686PubMedGoogle Scholar
  61. 61.
    Morris, KH, Ishikawa, A, Keightley, PD 1999Quantitative trait loci for growth traits in C57BL/6J × DBA/2J mice.Mamm Genome10225228PubMedGoogle Scholar
  62. 62.
    Mullis, K, Faloona, F, Scharf, S, Saiki, R, Hom, G,  et al. 1992Specific enzymatic amplification of DNA in vitro: the Polymerase Chain Reaction.Biotechnology241727PubMedGoogle Scholar
  63. 63.
    Nelson, MR, Kardia, SL, Ferrell, RE, Sing, CF 2001A combinatorial partitioning method to identify multilocus genotypic partitions that predict quantitative trait variation.Genome Res11458470CrossRefPubMedGoogle Scholar
  64. 64.
    Ott, L l984An Introduction to Statistical Methods and Data Analysis, 2nd ed.Duxbury PressBoston, Mass.Google Scholar
  65. 65.
    Plum, L, Kluge, R, Giesen, K, Altmuller, J, Ortlepp, JR,  et al. 2000Characterization of a susceptibility locus on chromosome 4 and its relation with obesity.Diabetes4915901596PubMedGoogle Scholar
  66. 66.
    Pomp, D 1997Genetic dissection of obesity in polygenic animal models.Behav Genet27285306CrossRefPubMedGoogle Scholar
  67. 67.
    Pomp, D, Cushman, MA, Foster, SC, Drudik, DK, Fortman, M,  et al. 1994Identification of quantitative trait loci for body weight and body fat in mice.Proc 5th World Congr Genet Appl Livest Prod21209212Google Scholar
  68. 68.
    Pomp, D, Jerez-Timaure, N, Allan, MF, Eisen, EJ 2002Integrated genomic, proteomic and metabolomic dissection of polygenic selection response for murine growth and fatness.Proc 7th World Congr Genet Appl Livest Prod32447450Google Scholar
  69. 69.
    Reifsnyder, PC, Churchill, G, Leiter, EH 2000Maternal environment and genotype interact to establish diabesity in mice.Genome Res1015681578Google Scholar
  70. 70.
    Robertson, A 1966Biochemical polymorphisms in animal improvement.Proc X Europ Congr Anim Blood Groups Biochem Polymorph.3542Google Scholar
  71. 71.
    Robertson, A 1967The nature of quantitative genetic variation.Brink, A eds. Heritage from Mendel,University of WisconsinMadison, Wis.265280Google Scholar
  72. 72.
    Rocha, JL, Van Vleck, LD, Eisen, EJ, Pomp, D 2004A large sample QTL study in mice: II. Organ and body composition traits.Mamm Genome..in pressGoogle Scholar
  73. 73.
    Rocha, JL, Siewerdt, F, Van Vleck, LD, Eisen, EJ, Pomp, D 2004A largesample QTL study in mice: III. Reproduction.Mamm Genome..in pressGoogle Scholar
  74. 74.
    Routman, EJ, Cheverud, JM 2004Gene effects on a quantitative trait: twolocus epistatic effects measured at microsatellite markers and at estimated QTL.Evolution5116541662Google Scholar
  75. 75.
    SAS Institute Inc.1985SAS User’s Guide: BasicsSASGary, NCGoogle Scholar
  76. 76.
    SAS Institute Inc.SAS Institute Inc.1996SAS System for Mixed ModelsSASGary, NCGoogle Scholar
  77. 77.
    Schork, NJ 2001Genome partitioning and whole-genome analysis.Adv Genet42299322PubMedGoogle Scholar
  78. 78.
    Taylor, BA, Tarantino, LM, Phillips, SJ 1999Gender-influenced obesity QTLs identified in a cross involving the KK type II diabetes-prone mouse strain.Mamm Genome10963968Google Scholar
  79. 79.
    Terwilliger, JD, Goring, HH 2000Gene mapping in the 20th and 21st centuries: statistical methods, data analysis, and experimental design.Hum Biol7263132PubMedGoogle Scholar
  80. 80.
    Van Ooijen, JW 1992Accuracy of mapping quantitative trait loci in autogamous species.Theor Appl Genet84803811Google Scholar
  81. 81.
    Vaughn, TT, Pletscher, LS, Peripato, A, Ellison, KK, Adams, E,  et al. 1999Mapping quantitative trait loci for murine growth: a closer look at genetic architecture.Genet Res Camb74313322CrossRefGoogle Scholar
  82. 82.
    Visscher, PM, Haley, CS 1996Detection of putative quantitative trait loci in line crosses under infinitesimal genetic models.Theor Appl Genet93691702Google Scholar
  83. 83.
    Wade, MJ 1992Sewall Wright: gene interaction and the shifting balance theory.Oxf Surv Evol Biol83362Google Scholar
  84. 84.
    Weiss, KM 1996Is there a paradigm shift in genetics? Lessons from the study of human diseases.Mol Phylogenet Evol5259265CrossRefPubMedGoogle Scholar
  85. 85.
    West, DB, Lefevre, JG, York, B, Truett, GE 1994Dietary obesity linked to genetic loci on chromosomes 9 and 15 in a polygenic mouse model.J Clin Invest9414101416PubMedGoogle Scholar
  86. 86.
    White, JM, Eisen, EJ, Legates, JE 1970Sex-heterosis interaction, heterosis and reciprocal effects among mice selected for body weight.J Anim Sci31289295Google Scholar
  87. 87.
    Xu, Y, Jin, P, Mellor, AL, Warner, CM 1994Identification of the Fed gene at the molecular level: the Q9 MHC class I transgene converts the Ped slow to the Ped fast phenotype.Biol Reprod51695699PubMedGoogle Scholar
  88. 88.
    Yano, M 2001Genetic and molecular dissection of naturally occurring variation.Curr Opin Plant Biol4130135PubMedGoogle Scholar
  89. 89.
    York, B, Lei, K, West, DB 1996Sensitivity to dietary obesity linked to a locus on chromosome 15 in a CAST/Ei × C57BL/6J F2 intercross.Mamm Genome7677681Google Scholar
  90. 90.
    Young, ND 1999A cautiously optimistic vision for marker-assisted breeding.Molec Breed5505510CrossRefGoogle Scholar
  91. 91.
    Zeng, Z-B 1993Theoretical basis for separation of multiple linked gene effects in mapping quantitative trait loci.Proc Na‘tl Acad Sci USA901097210976Google Scholar
  92. 92.
    Zeng, Z-B 1994Precision mapping of quantitative trait loci.Genetics13614571468PubMedGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 2004

Authors and Affiliations

  • Joao L. Rocha
    • 1
  • Eugene J. Eisen
    • 2
  • L. Dale Van Vleck
    • 3
  • Daniel Pomp
    • 1
  1. 1.Department of Animal ScienceUniversity of Nebraska, Lincoln, Nebraska 68583-0908USA
  2. 2.Department of Animal ScienceNorth Carolina State University, Raleigh, North Carolina, 27695-7621USA
  3. 3.ARS, USMARCUSDA, Lincoln, Nebraska 68583-0908USA

Personalised recommendations