Mammalian Genome

, Volume 14, Issue 10, pp 692–702 | Cite as

The mapping of quantitative trait loci underlying strain differences in locomotor activity between 129S6 and C57BL/6J mice

  • Michele A. Kelly
  • Malcolm J. Low
  • Tamara J. Phillips
  • Edward K. Wakeland
  • Masashi Yanagisawa


Performance in the open field and rotarod paradigms, two common assessments of locomotor function, have been demonstrated to be strain dependent in mice. In this study, eight significant quantitative trait loci (QTL) for behavior phenotypes in either the open field or rotarod paradigms were identified between the 129S6 (129/SvEvTac) and C57BL/6J strains. These strains were chosen for comparison because of their frequent use in the generation of mutant mice from gene-targeted, embryonic stem cells. Two of the QTLs for horizontal distance traveled are located on Chromosomes (Chrs) 1 and 12 and closely replicate the findings of other groups using different strains of mice. Rotarod performance was influenced in an oppositional manner by two separate QTLs on Chr 1 and 2. Additionally, examination of several different aspects of behavior in the open field revealed significant QTLs for average speed (Chr 12), duration (Chrs 2, 16, and 18), time spent in motion (Chr 16), vertical movements (rearing) (Chrs 6 and 12), and vertical time (rearing time) (Chrs 6 and 12). Our finding of independent QTLs for these topographic components of open field activity supports the idea that they are separate and distinct from total horizontal distance traveled and should be studied independently. The QTLs described in this study, in combination with our panel of polymorphic chromosomal markers for 129S6 and C57BL/6J strains, will be useful in assessing the potential epistatic effects of parental strain background on the phenotypes of genetically modified mice.



The authors thank the following institutions for support: Department of Veterans Affairs (T.J. Phillips), NIDA R01 grant DA10913 (T.J. Phillips), NIAAA Alcohol Center grant AA10760 (T.J. Phillips), NIDA training grant T32 DA07262 (M.A. Kelly), NIDDK training grant T32DK07257 (M.A. Kelly), and funding from ERATO/JST (M. Yanagisawa). M. Yanagisawa is an Investigator and M.A. Kelly is an Associate of the Howard Hughes Medical Insitute.


  1. 1.
    Baik, JH, Picetti, R, Saiardi, A, Thiriet, G, Dierich, A,  et al. 1995Parkinsonian-like locomotor impairment in mice lacking dopamine D2 receptors.Nature377424428PubMedGoogle Scholar
  2. 2.
    Bolivar, V, Cook, M, Flaherty, L 2000List of transgenic and knockout mice: behavioral profiles.Mamm Genome11260274CrossRefPubMedGoogle Scholar
  3. 3.
    Bolivar, VJ, Cook, MN, Flaherty, L 2001Mapping of quantitative trait loci with knockout/congenic strains.Genome Res1115491552PubMedGoogle Scholar
  4. 4.
    Churchill, GA, Doerge, RW 1994Empirical threshold values for quantitative trait mapping.Genetics138963971PubMedGoogle Scholar
  5. 5.
    Clement, Y, Martin, B, Venault, P, Chapouthier, G 1995Involvement of regions of the 4th and 7th chromosomes in the open-field activity of mice.Behav Brain Res705157PubMedGoogle Scholar
  6. 6.
    Contet, C, Rawlins, JN, Deacon, RM 2001A comparison of 129S2/SvHsd and C57BL/6JOlaHsd mice on a test battery assessing sensorimotor, affective and cognitive behaviours: implications for the study of genetically modified mice.Behav Brain Res1243346PubMedGoogle Scholar
  7. 7.
    Crawley, JN, Belknap, JK, Collins, A, Crabbe, JC, Frankel, W,  et al. 1997Behavioral phenotypes of inbred mouse strains: implications and recommendations for molecular studies.Psychopharmacology132107124PubMedGoogle Scholar
  8. 8.
    Doerge, RW, Churchill, GA 1996Permutation tests for multiple loci affecting a quantitative character.Genetics142285294PubMedGoogle Scholar
  9. 9.
    Elder, GA, Friedrich, VL Jr, Chu, K, Lazzarini, RA 2000Presence of unmyelinated axons in the lumbar ventral roots of the 129 mouse strain.Neurosci Lett287101104PubMedGoogle Scholar
  10. 10.
    Fernandez-Teruel, A, Escorihuela, RM, Gray, JA, Aguilar, R, Gil, L,  et al. 2002A quantitative trait locus influencing anxiety in the laboratory rat.Genome Res12618626PubMedGoogle Scholar
  11. 11.
    Festing, MF, Simpson, EM, Davisson, MT, Mobraaten, LE 1999Revised nomenclature for strain 129 mice.Mamm Genome10836PubMedGoogle Scholar
  12. 12.
    Flint, J, Corley, R, DeFries, JC, Fulker, DW, Gray, JA,  et al. 1995A simple genetic basis for a complex psychological trait in laboratory mice.Science26914321435PubMedGoogle Scholar
  13. 13.
    Gerlai, R 1996Gene-targeting studies of mammalian behavior: is it the mutation or the background genotype?Trends Neurosci19177181PubMedGoogle Scholar
  14. 14.
    Gershenfeld, HK, Neumann, PE, Mathis, C, Crawley, JN, Li, X,  et al. 1997Mapping quantitative trait loci for open-field behavior in mice.Behav Genet27201210PubMedGoogle Scholar
  15. 15.
    Hall, CS 1934Emotional behavior in the rat: I. Defecation and urination as measures of individual differences in emotionality.J Comp Psychol18385403Google Scholar
  16. 16.
    Hall, CS, Ballachey, EL 1932A study of the rat’s behavior in a field: a contribution to method in comparative psychology.Univ Calif Publ Psychol6112Google Scholar
  17. 17.
    Homanics, GE, Quinlan, JJ, Firestone, LLv 1999Pharmacologic and behavioral responses of inbred C57BL/6J and strain 129/SvJ mouse lines.Pharmacol Biochem Behav632126CrossRefPubMedGoogle Scholar
  18. 18.
    Kelly, MA, Rubinstein, M, Asa, SL, Zhang, G, Saez, C,  et al. 1997Pituitary lactotroph hyperplasia and chronic hyperprolactinemia in dopamine D2 receptor-deficient mice.Neuron19103113PubMedGoogle Scholar
  19. 19.
    Kelly, MA, Rubinstein, M, Phillips, TJ, Lessov, CN, Burkhart-Kasch, S,  et al. 1998Locomotor activity in D2 dopamine receptor-deficient mice is determined by gene dosage, genetic background, and developmental adaptations.J Neurosci1834703479PubMedGoogle Scholar
  20. 20.
    Lander, E, Kruglyak, L 1995Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results.Nat Genet11241247PubMedGoogle Scholar
  21. 21.
    Lander, ES, Green, P, Abrahamson, J, Barlow, A, Daly, MJ,  et al. 1987MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations.Genomics1174181PubMedGoogle Scholar
  22. 22.
    Manly, KF, Cudmore Jr, JH, Meer, JM 2001Map Manager QTX, cross-platform software for genetic mapping.Mamm Genome12930932PubMedGoogle Scholar
  23. 23.
    McClearn, GE 1960Strain differences in activity of mice: influence of illumination.J Comp Physio Psychol53142143Google Scholar
  24. 24.
    Montkowski, A, Poettig, M, Mederer, A, Holsboer, F 1997Behavioral performance in three substrains of mouse strain 129.Brain Res7621218PubMedGoogle Scholar
  25. 25.
    Paulus, MP, Dulawa, SC, Ralph, RJ, Geyer, MA 1999Behavioral organization is independent of locomotor activity in 129 and C57 mouse strains.Brain Res8352736PubMedGoogle Scholar
  26. 26.
    Sanchez, JA, Ho, CS, Vaughan, DM, Garcia, MC, Grange, RW,  et al. 2000Muscle and motor-skill dysfunction in a K+ channel-deficient mouse are not due to altered muscle excitability or fiber type but depend on the genetic background.Pflueg Arch Eur J Physiol4403441Google Scholar
  27. 27.
    Sen, S, Churchill, G 2001A statistical framework for quantitative trait mapping.Genetics159371387PubMedGoogle Scholar
  28. 28.
    Simpson, EM, Linder, CC, Sargent, EE, Davisson, MT, Mobraaten, LE,  et al. 1997Genetic variation among 129 substrains and its importance for targeted mutagenesis in mice.Nat Genet161927PubMedGoogle Scholar
  29. 29.
    Thompson, WR 1953The inheritance of behavior: behavioral differences in fifteen mouse strains.Can J Psychol7145155PubMedGoogle Scholar
  30. 30.
    Thompson, WR 1956The inheritance of behavior: activity differences in five inbred mouse strains.J Hered47147148Google Scholar
  31. 31.
    Walsh, RN, Cummins, RA 1976The open-field test: a critical review.Psychol Bull83482504CrossRefGoogle Scholar
  32. 32.
    Wolfer, DP, Muller, U, Stagliar, M, Lipp, HP 1997Assessing the effects of the 129/Sv genetic background on swimming navigation learning in transgenic mutants: a study using mice with a modified beta-amyloid precursor protein gene.Brain Res771113PubMedGoogle Scholar
  33. 33.
    Wolfer, DP, Crusio, WE, Lipp, HP 2002Knockout mice: simple solutions to the problems of genetic background and flanking genes.Trends Neurosci25336340PubMedGoogle Scholar
  34. 34.
    You, KH, Hsieh, CL, Hayes, C, Stahl, N, Francke, U,  et al. 1991DNA sequence, genomic organization, and chromosomal localization of the mouse peripheramyelin protein zero gene: identification of polymorphic alleles.Genomics9751757PubMedGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 2003

Authors and Affiliations

  • Michele A. Kelly
    • 1
  • Malcolm J. Low
    • 2
    • 3
  • Tamara J. Phillips
    • 3
    • 4
  • Edward K. Wakeland
    • 5
  • Masashi Yanagisawa
    • 1
    • 6
  1. 1.HHMI and Dept. Molecular GeneticsThe University of Texas, Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard, Dallas, TX 75390-9050USA
  2. 2.Vollum InstituteOregon Health and Science University, Portland, OregonUSA
  3. 3.Dept. Behavioral NeuroscienceOregon Health and Science University, Portland, OregonUSA
  4. 4.The Veterans Affairs Medical Center, Portland, OregonUSA
  5. 5.Center for ImmunologyThe University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390USA
  6. 6.ERATO Yanagisawa Orphan Receptor ProjectJapan Science and Technology Corporation, TokyoJapan

Personalised recommendations