Advertisement

Why did they move to a barren land? Iron Age settlement and the consequences for primary woodlands in the uplands of southern Bohemia, Czech Republic

  • Radka KozákováEmail author
  • Alžběta Danielisová
Original Article
  • 25 Downloads

Abstract

The Czech Republic (CR) has an exceptionally high number of pollen sites, but large areas, such as the area south and southwest of Praha (Prague), still lack pollen records. Although we know the basic scenario of Holocene vegetation development in the CR, questions remain. Recent discussions have concerned the role of Picea abies and Abies alba in the mid and late Holocene, especially in upland regions of the CR. Quantitative vegetation reconstruction methods have shown unexpectedly high proportions of both taxa in most regions within the CR in these periods, with the exception of the lowlands. In this study we publish original data from southern Bohemia. We aim to use it to build a picture of both local vegetation and settlement development in an upland landscape where pollen records with a detailed chronology were previously lacking. The area under study, where the first intensive occupation occurred during the early Iron Age (800/750–500 bc), is characterised by poor acid soils, a subcontinental climate and gold-bearing watercourses. Iron Age settlements could have been connected with extensive gold extraction along those watercourses, and this is supported by pollen data. From the same period, a number of Viereckschanzen (rectangular ditched enclosures) have been found in the region. According to pollen data, the woods were originally dominated by Pinus and later by Abies and Picea. Abieti-Quercetum was the main woodland association, while Picea probably grew mostly on the floodplains. During the Iron Age (800/750–50 bc), a sharp and parallel decrease in both Picea and Alnus is detected. However, the extent of farmed land was limited during this period and it became established only in the early medieval period from around ad 900. A. alba and the remaining P. abies nearly disappeared by around ad 1200.

Keywords

Picea abies Abies alba Abieti-Quercetum Iron Age Gold extraction Pollen analysis Viereckschanze 

Notes

Acknowledgements

We are grateful to Vojtěch Abraham for creating depth age models for pollen diagrams. Many thanks to Tim Morgan for the language corrections. The research was supported by the Grantová agentura České republiky (Czech Science Foundation) Project Number 18-20096S).

References

  1. Abraham V, Kuneš P, Petr L et al (2016) A pollen-based quantitative reconstruction of the Holocene vegetation updates a perspective on the natural vegetation in the Czech Republic and Slovakia. Preslia 88:409–434Google Scholar
  2. Audouze F, Buchsenschutz O (1989) Villes, villages et campagnes de l’Europe celtique: du début du IIe millénaire à la fin du Ie siècle avant J.-C. Hachette, ParisGoogle Scholar
  3. Behre K-E (1981) The interpretation of anthropogenic indicators in pollen diagrams. Pollen Spores 23:225–245Google Scholar
  4. Beug H-J (2004) Leitfaden der Pollenbestimmung für Mitteleuropa und angrenzende Gebiete. Pfeil, MünchenGoogle Scholar
  5. Blaauw M (2010) Methods and code for ‘classical’ age-modelling of radiocarbon sequences. Quat Geochronol 5:512–518CrossRefGoogle Scholar
  6. Blackford JJ (2000) Charcoal fragments in surface samples following a fire and the implications for interpretation of subfossil charcoal data. Palaeogeogr Palaeoclimatol Palaeoecol 164:33–42CrossRefGoogle Scholar
  7. Bollacher C (2009) Die keltische Viereckschanze auf der ‘Klinge’ bei Riedlingen. (Materialhefte zur Archäologie in Baden-Württemberg 88) Theiss, StuttgartGoogle Scholar
  8. Boublík K, Douda J, Hédl R, Chytrý M (2013) Mezofilní a vlhké opadavé listnaté lesy (Carpino-Fagetea) (Mesic and wet deciduous broad-leaved forests, in Czech). In: Chytrý M (ed) Vegetace České Republiky 4, Lesní a křovinná vegetace (Vegetation of the Czech Republic 4, Forest and scrub vegetation, in Czech). Academia, Praha, pp 193–295Google Scholar
  9. Břízová E (1999) Late Glacial and Holocene development of the vegetation in the Labe (Elbe) river flood-plain (Central Bohemia, Czech Republic). Acta Paleobot Suppl 2:549–554Google Scholar
  10. Bryson RA, McEnaney DeWall K (eds) (2007) A paleoclimatology workbook: high resolution, site-specific, macrophysical climate modeling. The Mammoth site of Hot Springs, Hot SpringsGoogle Scholar
  11. Buchsenschutz O (2006) Le monde rural et ses productions (IIe-Ier s. av. J.-C.). In: Haselgrove C (ed) Les mutations de la fin de l´âge du Fer: Celtes et Gaulois: l´Archéologie face à l´Histoire: Actes de la table ronde de Cambridge, 7-8 juillet 2005. (Collection Bibracte 12, 4) Bibracte, Centre archéologique européen, Glux-en-Glenne, pp 55–63Google Scholar
  12. Carter VA, Chiverrell RC, Clear JL et al (2018) Quantitative palynology informing conservation ecology in the Bohemian/Bavarian forests of Central Europe. Front Plant Sci 8:1–14CrossRefGoogle Scholar
  13. Chytráček M (2000) Elite burials in Bohemia from the 6th - 5th century B.C. and the beginnings of a new art-style. In: Villes A, Bataille-Melkon A (eds) Fastes des Celtes entre Champagne et Bourgogne aux VIIe-IIIe siècles avant notre ère. Actes du Colloque de l´A.F.E.A.F. tenu à Troyes en 1995. (Mémoire de la Societé Archéologique Champenoise 15. Supplement au bulletin 4) Societé Archéologique Champenoise, Joué-les-Tours, pp 359–377Google Scholar
  14. Chytrý M (2012) Vegetation of the Czech Republic: diversity, ecology, history and dynamics. Preslia 84:427–504Google Scholar
  15. Clark JS, Lynch J, Stocks BJ, Goldammer JG (1998) Relationship between charcoal particles in air and sediments in west central Siberia. Holocene 8:19–29CrossRefGoogle Scholar
  16. Culek M (ed) (1996) Biogeografické členění České republiky (Biogeographical division of the Czech Republic, in Czech). Enigma, PrahaGoogle Scholar
  17. Danzeglocke U, Jöris O, Weninger B (2012) CalPal-2007. http://www.calpalonline.de/. Accessed 22 Apr 2014
  18. De Lucia Lobo F, Costa M, Leão de Moraes Novo EM, Telmer K (2016) Distribution of artisanal and small-scale gold mining in the Tapajós River basin (Brazilian Amazon) over the past 40 years and relationship with water siltation. Remote Sens 8:579.  https://doi.org/10.3390/rs8070579 CrossRefGoogle Scholar
  19. Dobrowolska D (1998) Structure of silver fir (Abies alba Mill.) natural regen-eration in the ‘Jata’ reserve in Poland. For Ecol Manage 110:237–247CrossRefGoogle Scholar
  20. Dobrowolska D, Bončina A, Klumpp R (2017) Ecology and silviculture of silver fir (Abies alba Mill.): a review. J For Res 22:326–335CrossRefGoogle Scholar
  21. Dreslerová D (2010) Klima v holocénu a možnosti jeho poznání (Holocene climate and possibilities for its recognition, in Czech). Živá archeologie REA 11:18–21Google Scholar
  22. Fægri K, Iversen J (1989) In: Fægri K, Kaland PE, Krzywinski K (eds) Textbook of pollen analysis, 4th edn. Wiley, ChichesterGoogle Scholar
  23. Firbas F (1949) Spät- und nacheiszeitliche Waldgeschichte Mitteleuropas nördlich der Alpen. I: AllgemeineWaldgeschichte. Fischer, JenaGoogle Scholar
  24. Fröhlich J (2006) Zlato na Prácheňsku (Gold in Prácheňsko, in Czech). Prácheňské nakladatelství Písek, PísekGoogle Scholar
  25. Goring S, Dawson A, Simpson GL, Ram K, Graham RW, Grimm EC, Williams JW (2015) Neotoma: a programmatic interface to the Neotoma Paleoecological Database. Open Quat.  https://doi.org/10.5334/oq.ab CrossRefGoogle Scholar
  26. Grimm EC (2004) TILIA and TGView. Illinois State Museum, SpringfieldGoogle Scholar
  27. Hrubý P, Hejhal P, Malý K, Kočár P, Petr L (2014) Centrální Českomoravská vrchovina na prahu vrcholného středověku. Archeologie, geochemie a rozbory sedimentárních výplní niv (Central Bohemian-Moravian highlands on the threshold of the High Middle Ages. Archaeology, geochemistry and the analyses of alluvial sediments, in Czech). Masarykova univerzita, BrnoGoogle Scholar
  28. Jankovská V (1980) Paläogeobotanische Rekonstruktion der Vegetationsentwicklung im Becken Třeboňská pánev während des Spätglazials und Holozäns. Vegetace ČSSR A 11. Academia, PrahaGoogle Scholar
  29. Jankovská V (1988) Palynologische Erforschung archäologischer Proben aus dem Komořanské jezero-See bei Most (NW-Böhmen). Folia Geobot 23:45–77CrossRefGoogle Scholar
  30. Jankovská V (1990) The evolution of Late-Glacial and Holocene vegetation in the vicinity of Světlá nad Sázavou (in the Western Forland of the Bohemian-Moravian uplands). Folia Geobot 25:1–25CrossRefGoogle Scholar
  31. Jankovská V (1992) Vegetationsverhältnisse und Naturumwelt des Beckens Jestřebská kotlina am Ende des Spätglazials und im Holozän (Doksy-Gebiet). Folia Geobot 27:137–148CrossRefGoogle Scholar
  32. Jouffroy-Bapicot I, Pulido M, Baron S et al (2007) Environmental impact of early palaeometallurgy: pollen and geochemical analysis. Veget Hist Archaeobot 16:251–258CrossRefGoogle Scholar
  33. Kaplan Z (2012) Flora and phytogeography of the Czech Republic. Preslia 84:505–573Google Scholar
  34. Klápště J (2012) The Czech lands in medieval transformation. Brill, LeidenCrossRefGoogle Scholar
  35. Kozáková R, Šamonil P, Kuneš P, Novák J, Kočár P, Kočárová R (2011) Contrasting local and regional Holocene histories of Abies alba in the Czech Republic in relation to human impact: evidence from forestry, pollen and anthracological data. Holocene 21:431–444CrossRefGoogle Scholar
  36. Kumi-Boateng B, Mireku-Gyimah D, Duker A (2012) A spatio-temporal based estimation of vegetation changes in the Tarkwa mining area of Ghana. Res J Environ Earth Sci 4:215–229Google Scholar
  37. Kuneš P, Abraham V, Kovářík O, Kopecký M, PALYCZ Contributors (2009) Czech Quaternary Palynological Database—PALYCZ: review and basic statistics of the data. Preslia 81:209–238Google Scholar
  38. Málek J (1981) Problematik der Ökologie der Tanne (Abies alba Mill.) und ihres Sterbens in der ČSSR. Forstwissen Cent.bl 100:170–174Google Scholar
  39. Malrain F (2011) Functioning and hierarchy of farms in the Gallic society from the 3rd century BC to the Roman Period. In: Fechner K, Devos Y, Leopold M, Völkel J (eds) Archaeology, soil- and life- sciences applied to enclosures and fields. (BAR International Series 2222) Archaeopress, Oxford, pp 107–120Google Scholar
  40. Maponga O, Ngorima CF (2003) Overcoming environmental problems in the gold panning sector through legislation and education: the Zimbabwean experience. J Clean Prod 11:147–157CrossRefGoogle Scholar
  41. Marquer L, Gaillard M-J, Sugita S et al (2017) Quantifying the effects of land use and climate on Holocene vegetation in Europe. Quat Sci Rev 171:20–37CrossRefGoogle Scholar
  42. Michálek J (1997) Gold der Hallstatt- und Frühlatènezeit (Ha C-LT A). In: Lehrberger G, Fridrich J, Gebhard R, Hrala J (eds) Das prähistorische Gold in Bayern, Böhmen und Mähren. (Památky archeologické - Supplementum 7) Institut of Archaeology, Prague, pp 199–210Google Scholar
  43. Militký J (2015) Oppidum hradiště u Stradonic. Komentovaný katalog mincovních nálezů a dokladů mincovní výroby (Das Oppidum Hradiště bei Stradonice: kommentierter Katalog der Münzfunde und Belege der Münzproduktion, Tschechische). Abalon, PrahaGoogle Scholar
  44. Militký J (2018) Keltské mincovnictví ve 3. a 2. století před Kristem v Čechách (Keltisches Münzwesen im 3. und 2. Jahrhundert vor Christus in Böhmen, Tschechische). Archeologický ústav AV ČR, PrahaGoogle Scholar
  45. Moravec D, Votýpka J (2003) Regionalised modelling. Karolinum Press, Charles University, PragueGoogle Scholar
  46. Morávek P (2015) Mapy výskytů zlata v České republice (Maps of gold in the Czech Republic). PrahaGoogle Scholar
  47. Mráz K (1959) Příspěvek k poznání původnosti smrku a jedle ve vnitrozemí Čech (Contribution to knowledge of natural occurrence of spruce and fir in inland Bohemia). Práce Výzk Úst Lesn ČSR 17:135–180Google Scholar
  48. Neuhäuslová Z, Blažková D, Grulich V et al (2001) Mapa potenciální přirozené vegetace České Republiky. Textová část (Map of potential natural vegetation of the Czech Republic. Explanatory text, in Czech). Academia, PrahaGoogle Scholar
  49. Novák J, Sádlo J, Svobodová-Svitavská H (2012) Unusual vegetation stability in a lowland pine forest area (Doksy region, Czech Republic). Holocene 22:947–955CrossRefGoogle Scholar
  50. Nožička J (1957) Přehled vývoje našich lesů (Development of our forests, in Czech). Státní zemědělské nakladatelství, PrahaGoogle Scholar
  51. Pokorný P (2002) A high-resolution record of Late-Glacial and Early-Holocene climatic and environmental change in the Czech Republic. Quat Int 91:101–122CrossRefGoogle Scholar
  52. Pokorný P, Jankovská V (2000) Long-term vegetation dynamics and the infilling process of a former lake (Švarcenberk, Czech Republic). Folia Geobot 35:433–457CrossRefGoogle Scholar
  53. Pokorný P, Kuneš P (2009) 5. Kožlí (S. Bohemia, Czech Republic). Grana 48:77–78CrossRefGoogle Scholar
  54. Pokorný P, Klimešová J, Klimeš L (2000) Late Holocene history and vegetation dynamics of a floodplain alder carr: a case study from eastern Bohemia, Czech Republic. Folia Geobot 35:43–58CrossRefGoogle Scholar
  55. Reille M (1992) Pollen et spores d’Europe et d’Afrique du nord. Laboratoire de Botanique Historique et Palynologie, MarseilleGoogle Scholar
  56. Roleček J (2013) Acidofilní doubravy (Quercetea robori-petraeae) (Acidophilous oak forests). In: Chytrý (ed) Vegetace České Republiky 4, Lesní a křovinná vegetace (Vegetation of the Czech Republic 4, Forest and scrub vegetation). Academia, Praha, pp 347–365Google Scholar
  57. Rybníček K, Rybníčková E (1987) Palaeobotanical evidence of Middle Holocene stratigraphic hiatusesin Czechoslovakia and their explanation. Folia Geobot 22:313–327CrossRefGoogle Scholar
  58. Rybníčková E (1966) Pollen-analytical reconstruction of vegetation in the upper regions of the Orlické hory mountains, Czechoslovakia. Folia Geobot 1:193–288CrossRefGoogle Scholar
  59. Rybníčková E, Rybníček K (1985) Paleogeobotanical evaluation of the Holocene profile from the Řežabinec fish-pond. Folia Geobot 20:419–437CrossRefGoogle Scholar
  60. Rybníčková E, Rybníček K, Jankovská V (1975) Palaeoecological investigations of buried peat profiles from the Zbudovská blata marshes, Southern Moravia. Folia Geobot 10:157–178CrossRefGoogle Scholar
  61. Sádlo J (2000) Původ travinné vegetace slatin v Čechách: sukcese kontra cenogeneze (The origin of grassland vegetation of fen peats in the Czech Republic: succession versus community formation, in Czech). Preslia 72:495–506Google Scholar
  62. Šálková T, Hiltscher T, Novák J, Houfková P, Kovačiková L (2017) Bioarcheologická analýza polykulturní lokality Písek—AISIN II (okr. Písek) z roku 2014 (Bioarchaeological analysis of a multicultural site at Písek in 2014, in Czech). Archeologické výzkumy v jižních Čechách 30:199–228Google Scholar
  63. Sankot P (2018) Kovolitectví a šperkařství (Metalwork and jewellery, in Czech). In: Militký J, Kysela J, Tisucká M (eds) Keltové. Čechy v 8. až 1. století před Kristem (The Celts. Bohemia from the 8th century to the 1st century B.C.). Národní Muzeum, Praha, pp 217–229Google Scholar
  64. Soudská E (1994) Die Anfänge der keltischen Zivilisation in Böhmen. Das Gräberfeld Manětín-Hrádek. Krystal OP, PrahaGoogle Scholar
  65. Svobodová H, Reille M, Goeury C (2001) Past vegetation dynamics of Vltavský luh, upper Vltava river valley in the Šumava mountains, Czech Republic. Veget Hist Archaeobot 10:185–199CrossRefGoogle Scholar
  66. Szabó P, Kuneš P, Svobodová-Svitavská H et al (2017) Using historical ecology to reassess the conservation status of coniferous forests in Central Europe. Conserv Biol 31:150–160CrossRefGoogle Scholar
  67. Tinner W, Colombaroli D, Heiri O et al (2013) The past ecology of Abies alba provides new perspectives on future responses of silver fir forests to global warming. Ecol Monogr 83:419–439CrossRefGoogle Scholar
  68. Venclová N, Drda P, Michálek J, Militký J, Salač V, Sankot P, Vokolek V (2008) Archeologie pravěkých Čech 7. Doba laténská (Archaeology of prehistoric Bohemia 7, La Tène period, in Czech). Archeologický ústav AV ČR, PrahaGoogle Scholar
  69. Volařík D, Hédl R (2013) Expansion to abandoned agricultural land forms an integral part of silver fir dynamics. For Ecol Manage 292:39–48CrossRefGoogle Scholar
  70. Vrška T, Adam D, Hort L, Kolář T, Janík D (2009) European beech (Fagus sylvatica L.) and silver fir (Abies alba Mill.) rotation in the Carpathians—a developmental cycle or a linear trend induced by men? For Ecol Manage 258:347–356CrossRefGoogle Scholar
  71. Wanner H, Mercolli L, Grosjean M, Ritz SP (2015) Holocene climate variability and change; a data-based review. J Geol Soc 172:254–263CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Archaeology of the Czech Academy of SciencesPraha 1Czech Republic

Personalised recommendations