20,000 years of interactions between climate, vegetation and land use in Northern Greece

  • Sylvia Gassner
  • Erika Gobet
  • Christoph SchwörerEmail author
  • Jacqueline van Leeuwen
  • Hendrik Vogel
  • Tryfon Giagkoulis
  • Stamatina Makri
  • Martin Grosjean
  • Sampson Panajiotidis
  • Albert Hafner
  • Willy Tinner
Original Article


Detailed knowledge about the history of vegetation, fire and land use is scarce in Northern Greece. We analysed lake sediments from Limni Zazari (Northern Greece) to reconstruct the past local vegetation and fire history with a special focus on land use and its impacts on erosion and lake eutrophication. Our data suggest a rather dense steppic vegetation after ca 20,000 cal bp (18050 cal bc). Forest expansion with Pinus sylvestris and admixed Quercus pubescens started around 14,500 cal bp (12550 cal bc). After the onset of the Holocene, mixed deciduous sub-mediterranean oak forests expanded, accompanied by rapidly decreasing soil erosion rates and increasing aquatic biological productivity. Pollen of cereals and Plantago lanceolata suggests continuous farming activities in the region after 8,200 cal bp (6250 cal bc), in agreement with archaeological evidence. Fairly closed mixed pine-oak forests dominated the landscape until ca 3,500 cal bp (1550 cal bc) that were only temporarily reduced during the Neolithic around 7,100 and 6,500 cal bp (5150 and 4550 cal bc). Land cover changes and aquatic biogeochemistry were closely linked during this period. Forest phases corresponded to lake eutrophication and hypolimnetic anoxia (meromixis), whereas during periods of deforestation (e.g. around 8,200 cal bp/6250 cal bc) soil erosion rates and lake mixing increased, while aquatic productivity decreased. After 3,500 cal bp (1550 cal bc) humans disrupted forests and open land vegetation expanded (e.g. Artemisia, Rumex-type, Cichorioideae, Chenopodiaceae). With the onset of the Iron Age (ca. 3,050 cal bp/1100 cal bc) grassland communities expanded massively and pine-oak forests gradually declined. Anthropogenic pressure on forests increased even more during the past 500 years. Finally, forest recovery during the recent decades led to decreased erosion and increased lake productivity. We conclude that over the millennia, intense pastoral and arable activities shaped both aquatic and terrestrial environments, ultimately creating a humanized vegetation mosaic in which the original natural mixed deciduous oak forests only form relict stands. Future climate warming and decreasing anthropogenic pressure may release a rapid spread of mixed deciduous oak forests around Limni Zazari.


Aquatic productivity Fire history Land use Neolithisation Palaeoecology Vegetation history 



We gratefully thank the coring team Willi Tanner, André Lotter, Sandra Brügger and Sebastian Eggenberger for the field work. Tiziana Pedrotta is acknowledged for help during XRF analysis, Pim van der Knaap for help with botanical identifications, Sandra Brügger and Fabian Rey for help with figure design. We acknowledge the University of Bern for financing field work (ID-Grant 2015/003 to A. Hafner and W. Tinner). S. Makri was funded through the Hans Sigrist Foundation and SNF Grant (200021_172586).


  1. Ammann B, Birks HJB, Brooks SJ et al (2000) Quantification of biotic responses to rapid climatic changes around the Younger Dryas—a synthesis. Palaeogeogr Palaeoclimatol Palaeoecol 159:313–347CrossRefGoogle Scholar
  2. Ammann B, van Leeuwen JF, van der Knaap WO, Lischke H, Heiri O, Tinner W (2013) Vegetation responses to rapid warming and to minor climatic fluctuations during the Late-Glacial Interstadial (GI-1) at Gerzensee (Switzerland). Palaeogeogr Palaeoclimatol Palaeoecol 391:40–59CrossRefGoogle Scholar
  3. Ammerman AJ, Cavalli-Sforza LL (1971) Measuring the rate of spread of early farming in Europe. Man 6:674–688CrossRefGoogle Scholar
  4. Aufgebauer A, Panagiotopoulos K, Wagner B et al (2012) Climate and environmental change in the Balkans over the last 17 ka recorded in sediments from Lake Prespa (Albania/F.Y.R. of Macedonia/Greece). Quat Int 274:122–135CrossRefGoogle Scholar
  5. Belfer-Cohen A, Goring-Morris AN (2011) Becoming farmers: the inside story. Curr Anthropol 52:209–220CrossRefGoogle Scholar
  6. Bennett KD (1996) Determination of the number of zones in a biostratigraphical sequence. New Phytol 132:155–170CrossRefGoogle Scholar
  7. Beug H (2004) Leitfaden der Pollenbestimmung für Mitteleuropa und angrenzende Gebiete. Pfeil, MünchenGoogle Scholar
  8. Birks HJB, Gordon AD (1985) Numerical methods in quaternary pollen analysis. Academic Press, LondonGoogle Scholar
  9. Blaauw M (2010) Methods and code for ‘classical’ age-modelling of radiocarbon sequences. Quat Geochronol 5:512–518CrossRefGoogle Scholar
  10. Bond G, Heinrich H, Broecker W et al (1992) Evidence for massive discharges of icebergs into the North Atlantic Ocean during the last glacial period. Nature 360:245–249CrossRefGoogle Scholar
  11. Bottema S (1974) Late Quaternary vegetation history of northwestern Greece. Dissertation, University of GroningenGoogle Scholar
  12. Bottema S (1982) Palynological investigations in Greece with special reference to pollen as an indicator of human activity. Palaeohistoria 24:257–288Google Scholar
  13. Bottema S (1995) The younger Dryas in the eastern Mediterranean. Quat Sci Rev 14:883–891CrossRefGoogle Scholar
  14. Bottema S (2003) The vegetation history of the Greek Mesolithic. In: Galanidou N, Perlès C (eds) The greek mesolithic: problems and perspectives. British School at Athens Studies 10. British School at Athens, London, pp 33–49Google Scholar
  15. Budja M (2004) The transition to farming and the ‘revolution’ of symbols in the Balkans. From ornament to entoptic and external symbolic storage. Doc Praehist 31:59–81CrossRefGoogle Scholar
  16. Butz C, Grosjean M, Fischer D, Wunderle S, Tylmann W, Rein B (2015) Hyperspectral imaging spectroscopy: a promising method for the biogeochemical analysis of lake sediments. J Appl Remote Sens 9(096031):1–20Google Scholar
  17. Butz C, Grosjean M, Goslar T, Tylmann W (2017) Hyperspectral imaging of sedimentary bacterial pigments: a 1700 year history of meromixis from varved Lake Jaczno, northeast Poland. J Paleolimnol 58:57–72CrossRefGoogle Scholar
  18. Cappers RTJ, Bekker RM, Jans JEA (2006) Digitale Zadenatlas van Nederland. Groningen Archaeological Studies 4. Barkhuis Publishing, GroningenGoogle Scholar
  19. Caudullo G, Tinner W (2016) Abies—Circum-Mediterranean firs in Europe: distribution, habitat, usage and threats. In: San-Miguel-Ayanz J, de Rigo D, Caudullo G, Houston Durrant T, Mauri A (eds) European atlas of forest tree species. Publication Office of the European Union, Luxembourg, pp 50–51Google Scholar
  20. Chrysostomou P, Jagoulis T, Maeder A (2015) The ‘Culture of Four Lakes’: prehistoric lakeside settlements (6th-2nd mill. bc) in the Amindeon Basin, Western Macedonia, Greece. Archäol Schweiz 38:24–32Google Scholar
  21. Clark JS, Merkt J, Müller H (1989) Post-glacial fire, vegetation, and human history on the northern alpine forelands, south-western Germany. J Ecol 77:897–925CrossRefGoogle Scholar
  22. Combourieu Nebout N, Peyron O, Dormoy I, Desprat S, Beaudouin C, Kotthoff U, Marret F (2009) Rapid climatic variability in the west Mediterranean during the last 25,000 years from high resolution pollen data. Clim Past 5:503–521CrossRefGoogle Scholar
  23. Conedera M, Krebs P, Tinner W, Pradella M, Torriani D (2004) The cultivation of Castanea sativa (Mill.) in Europe, from its origin to its diffusion on a continental scale. Veget Hist Archaeobot 13:161–179CrossRefGoogle Scholar
  24. Curry B, Henne PD, Mesquita-Joanes F et al (2016) Holocene paleoclimate inferred from salinity histories of adjacent lakes in southwestern Sicily (Italy). Quat Sci Rev 150:67–83CrossRefGoogle Scholar
  25. Davis MB (1963) On the theory of pollen analysis. Am J Sci 261:897–912CrossRefGoogle Scholar
  26. De Beaulieu JL, Brugiapaglia E, Joannin S et al (2017) Lateglacial-Holocene abrupt vegetation changes at Lago Trifoglietti in Calabria, Southern Italy: the setting of ecosystems in a refugial zone. Quat Sci Rev 158:44–57CrossRefGoogle Scholar
  27. Eaton E, Caudullo G, Oliveira S, de Rigo D (2016) Quercus robur and Quercus petraea in Europe: distribution, habitat, usage and threats. In: San-Miguel-Ayanz J, de Rigo D, Caudullo G, Houston Durrant T, Mauri A (eds) European atlas of forest tree species. Publication Office of the European Union, Luxembourg, pp 160–163Google Scholar
  28. Ellenberg H (1996) Vegetation Mitteleuropas mit den Alpen: in ökologischer, dynamischer und historischer Sicht, 5th edn. Ulmer, StuttgartGoogle Scholar
  29. El-Moslimany AP (1987) The late Pleistocene climates of the Lake Zeribar region (Kurdistan, western Iran) deduced from the ecology and pollen production of nonarboreal vegetation. Plant Ecol 72:131–139Google Scholar
  30. Finsinger W, Tinner W (2005) Minimum count sums for charcoal concentration estimates in pollen slides: accuracy and potential errors. Holocene 15:293–297CrossRefGoogle Scholar
  31. Firbas F (1949) Spät- und nacheiszeitliche Waldgeschichte Mitteleuropas nördlich der Alpen, vol 1. Allgemeine Waldgeschichte. Fischer, JenaGoogle Scholar
  32. Gkouma M, Karkanas P (2018) The physical environment in Northern Greece at the advent of the Neolithic. Quat Int 496:14–23. CrossRefGoogle Scholar
  33. Gobet E, Tinner W, Hubschmid P, Jansen I, Wehrli M, Ammann B, Wick L (2000) Influence of human impact and bedrock differences on the vegetational history of the Insubrian Southern Alps. Veget Hist Archaeobot 9:175–187CrossRefGoogle Scholar
  34. Grimm EC, Maher LJ, Nelson DM (2009) The magnitude of error in conventional bulk-sediment radiocarbon dates from central North America. Quat Res 72:301–308CrossRefGoogle Scholar
  35. Guilaine J (2003) De la vague à la tombe, la conquête néolithique de la Méditerranée (8000-2000 avant J.-C.). Le Seuil, ParisGoogle Scholar
  36. Guilaine J (2018) A personal view of the neolithisation of the Western Mediterranean. Quat Int 470:211–225. CrossRefGoogle Scholar
  37. Haberzettl T, Corbella H, Fey M et al (2007) Lateglacial and Holocene wet—dry cycles in southern Patagonia: chronology, sedimentology and geochemistry of a lacustrine record from Laguna Potrok Aike, Argentina. Holocene 17:297–310CrossRefGoogle Scholar
  38. Haug GH, Hughen KA, Sigman DM, Peterson LC, Röhl U (2001) Southward migration of the intertropical convergence zone through the Holocene. Science 293:1,304–1,308CrossRefGoogle Scholar
  39. Heegaard E, Birks HJB, Telford RJ (2005) Relationships between calibrated ages and depth in stratigraphical sequences: an estimation procedure by mixed-effect regression. Holocene 15:612–618CrossRefGoogle Scholar
  40. Heiri O, Ilyashuk B, Millet L, Samartin S, Lotter AF (2015) Stacking of discontinuous regional palaeoclimate records: chironomid-based summer temperatures from the Alpine region. Holocene 25:137–149CrossRefGoogle Scholar
  41. Hofmanová Z, Kreutzer S, Hellenthal G et al (2016) Early farmers from across Europe directly descended from Neolithic Aegeans. Proc Natl Acad Sci USA 113:6,886–6,891CrossRefGoogle Scholar
  42. Hofstetter S, Tinner W, Valsecchi V, Carraro G, Conedera M (2006) Lateglacial and Holocene vegetation history in the Insubrian Southern Alps—New indications from a small-scale site. Veget Hist Archaeobot 15:87–98CrossRefGoogle Scholar
  43. Kaltenrieder P, Belis CA, Hofstetter S, Ammann B, Ravazzi C, Tinner W (2009) Environmental and climatic conditions at a potential Glacial refugial site of tree species near the Southern Alpine glaciers. New insights from multiproxy sedimentary studies at Lago della Costa (Euganean Hills, Northeastern Italy). Quat Sci Rev 28:2,647–2,662CrossRefGoogle Scholar
  44. Karamitrou-Mentessidi G, Efstratiou N, Kozłowski JK et al (2013) New evidence on the beginning of farming in Greece: the Early Neolithic settlement of Mavropigi in western Macedonia (Greece). Antiquity 87(336), Project Gallery.
  45. Karamitrou-Mentessidi G, Efstratiou N, Kaczanowska M, Kozłowski JK (2015) Early neolithic settlement of Mavropigi in western greek Macedonia. Eurasian Prehist 12:47–116Google Scholar
  46. Karkanas P, Pavlopoulos K, Kouli K, Ntinou M, Tsartsidou G, Facorellis Y, Tsourou T (2011) Palaeoenvironments and site formation processes at the Neolithic lakeside settlement of Dispilio, Kastoria, Northern Greece. Geoarchaeology 26:83–117CrossRefGoogle Scholar
  47. Kokkinidou D, Trantalidou K (1991) Neolithic and Bronze Age settlement in western Macedonia. Annu Br Sch Athens 86:93–106CrossRefGoogle Scholar
  48. Kotsakis K (2014) Domesticating the periphery. Pharos 20:41–73Google Scholar
  49. Kotthoff U, Müller UC, Pross J, Schmiedl G, Lawson IT, van de Schootbrugge B, Schulz H (2008) Lateglacial and Holocene vegetation dynamics in the Aegean region: an integrated view based on pollen data from marine and terrestrial archives. Holocene 18:1,019–1,032CrossRefGoogle Scholar
  50. Krauß R, Marinova E, De Brue H, Weninger B (2018) The rapid spread of early farming from the Aegean into the Balkans via the Sub-Mediterranean-Aegean Vegetation Zone. Quat Int 496:24–41CrossRefGoogle Scholar
  51. Kutzbach JE, Webb T III (1993) Conceptual basis for understanding Late-Quaternary climates. In: Wright HE Jr, Kutzbach JE, Webb T III, Ruddiman WF, Street-Perrott FA, Bartlein PJ (eds) Global climates since the last glacial maximum. University of Minnesota Press, Minneapolis, pp 5–11Google Scholar
  52. Lang G (1994a) Quartäre Vegetationsgeschichte Europas: Methoden und Ergebnisse. Fischer, JenaGoogle Scholar
  53. Lang KJ (1994b) Abies alba Mill.: differentiation of provenances and provenance groups by the monoterpene patterns in the cortex resin of twigs. Biochem Syst Ecol 22:53–63CrossRefGoogle Scholar
  54. Laskar J, Robutel P, Joutel F, Gastineau M, Correia ACM, Levrard B (2004) A long-term numerical solution for the insolation quantities of the Earth. Astron Astrophys 428:261–285CrossRefGoogle Scholar
  55. Lawson IT, Al-Omari S, Tzedakis PC, Bryant CL, Christaniss K (2005) Lateglacial and Holocene vegetation history at Nisi Fen and the Boras mountains, northern Greece. Holocene 15:873–887CrossRefGoogle Scholar
  56. Legendre P, Birks HJB (2012) From classical to canonical ordination. In: Birks HJB, Lotter AF, Juggins S, Smol JP (eds) Tracking environmental change using lake sediments, vol 5. Data Handling and Numerical Techniques. Springer, Dordrecht, pp 201–248CrossRefGoogle Scholar
  57. Lespez L, Tsirtsoni Z, Darcque P et al (2013) The lowest levels at Dikili Tash, northern Greece: a missing link in the Early Neolithic of Europe. Antiquity 87(335):30–45CrossRefGoogle Scholar
  58. Magri D (2008) Patterns of post-glacial spread and the extent of glacial refugia of European beech (Fagus sylvatica). J Biogeogr 35:450–463CrossRefGoogle Scholar
  59. Mathieson I, Alpaslan-Roodenberg S, Posth C et al (2018) The genomic history of southeastern Europe. Nature 555:197–203CrossRefGoogle Scholar
  60. Moore P, Webb J, Collison M (1991) Pollen analysis. Blackwell Scientific Publications, OxfordGoogle Scholar
  61. NGRIP (North Greenland Ice Core Project) Members (2004) High-resolution record of Northern Hemisphere climate extending into the last interglacial period. Nature 431:147–151CrossRefGoogle Scholar
  62. Özdoğan M (2011) Archaeological evidence on the westward expansion of farming communities from eastern Anatolia to the Aegean and the Balkans. Curr Anthropol 52(Suppl 4):S415–S430CrossRefGoogle Scholar
  63. Packham JR, Thomas PA, Atkinson MD, Degen T (2012) Biological flora of the British Isles: Fagus sylvatica. J Ecol 100:1,557–1,608CrossRefGoogle Scholar
  64. Pattan JN, Parthiban G, Garg A, Moraes NRC (2017) Intense reducing conditions during the last deglaciation and Heinrich events (H1, H2, H3) in sediments from the oxygen minimum zone off Goa, eastern Arabian Sea. Mar Pet Geol 84:243–256CrossRefGoogle Scholar
  65. Peyron O, Guiot J, Cheddadi R et al (1998) Climatic reconstruction in Europe for 18,000 yr B.P. from pollen data. Quat Res 49:183–196CrossRefGoogle Scholar
  66. Pignatti S (2005) Valori di bioindicazione delle piante vascolari della flora d’Italia. Dipartimento di Botanica ed Ecologia dell’Università, CamerinoGoogle Scholar
  67. Pross J, Kotthoff U, Müller UC et al (2009) Massive perturbation in terrestrial ecosystems of the Eastern Mediterranean region associated with the 8.2 kyr B.P. climatic event. Geology 37:887–890CrossRefGoogle Scholar
  68. Reille M (1992) Pollen et spores d’Europe et d’Afrique du Nord. Laboratoire de Botanique Historique et Palynologie, MarseilleGoogle Scholar
  69. Reimer PJ, Bard E, Bayliss A et al (2013) IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal bp. Radiocarbon 55:1,869–1,887CrossRefGoogle Scholar
  70. Rein B, Sirocko F (2002) In situ reflectance spectroscopy analysing techniques for high-resolution pigment logging in sediment cores. Int J Earth Sci 91:950–954CrossRefGoogle Scholar
  71. Reingruber A (2008) Die Argissa Magula: das frühe und das beginnende mittlere Neolithikum im Lichte transägäischer Beziehungen. Die deutschen Ausgrabungen auf der Argissa Magula in Thessalien 2. Habelt, BonnGoogle Scholar
  72. Rey F, Gobet E, van Leeuwen JFN et al (2017) Vegetational and agricultural dynamics at Burgäschisee (Swiss Plateau) recorded for 18,700 years by multi-proxy evidence from partly varved sediments. Veget Hist Archaeobot 26:571–586CrossRefGoogle Scholar
  73. Rodwell JS (1998) British plant communities. Aquatic Communities, Swamps and Tall-Herb Fens, vol 4. Cambridge University Press, CambridgeGoogle Scholar
  74. Rosenmeier MF (2005) Bathymetric survey data of Lake Zazari. Accessed 14 May 2019
  75. Sadori L, Koutsodendris A, Panagiotopoulos K et al (2016) Pollen-based paleoenvironmental and paleoclimatic change at Lake Ohrid (south-eastern Europe) during the past 500 ka. Biogeosciences 13:1,423–1,437CrossRefGoogle Scholar
  76. Samartin S, Heiri O, Lotter AF, Tinner W (2012) Climate warming and vegetation response after Heinrich event 1 (16 700-16 000 cal yr bp) in Europe south of the Alps. Clim Past 8:1,913–1,927CrossRefGoogle Scholar
  77. Samartin S, Heiri O, Kaltenrieder P, Kühl N, Tinner W (2016) Reconstruction of full glacial environments and summer temperatures from Lago della Costa, a refugial site in Northern Italy. Quat Sci Rev 143:107–119CrossRefGoogle Scholar
  78. Samartin S, Heiri O, Joos F, Renssen H, Franke J, Brönnimann S, Tinner W (2017) Warm Mediterranean mid-Holocene summers inferred from fossil midge assemblages. Nat Geosci 10:207–212CrossRefGoogle Scholar
  79. Schier W (2009) Extensiver Brandfeldbau und die Ausbreitung der neolithischen Wirtschaftsweise in Mitteleuropa und Südskandinavien am Ende des 5. Jahrtausends v. Chr. Prähist Z 84:15–43CrossRefGoogle Scholar
  80. Seferlis M, Clement B, Aidoud A (2009) Effect of climate change and human activities on lake marginal wetlands: land use and lake dynamics during the last 60 years in Cheimaditida-Zazari catchments, Macedonia, Greece. Report on effects of climate change and human activities on lake marginal wetlands (WP1, task 4.2). Integrated project to evaluate the impacts of global change on European Freshwater Ecosystems (EURO-LIMPACS)Google Scholar
  81. Seppä H, Birks HJB (2001) July mean temperature and annual precipitation trends during the Holocene in the Fennoscandian tree-line area: pollen-based climate reconstructions. Holocene 11:527–539CrossRefGoogle Scholar
  82. Sinopoli G, Masi A, Regattieri E, Wagner B, Francke A, Peyron O, Sadori L (2018) Palynology of the last interglacial complex at Lake Ohrid: palaeoenvironmental and palaeoclimatic inferences. Quat Sci Rev 180:177–192CrossRefGoogle Scholar
  83. Skoulikidis NT, Bertahas I, Koussouris T (1998) The environmental state of freshwater resources in Greece (rivers and lakes). Environ Geol 36:1–17CrossRefGoogle Scholar
  84. Stockmarr J (1971) Tablets with spores used in absolute pollen analysis. Pollen Spores 13:615–621Google Scholar
  85. Stuiver M, Reimer PJ, Reimer RW (2017) CALIB 7.1 [WWW program].
  86. Ter Braak CJF, Prentice IC (1988) A theory of gradient analysis. Adv Ecol Res 18:271–313CrossRefGoogle Scholar
  87. Ter Braak CJF, Smilauer P (2002) CANOCO. Software for canonical community ordination. Microcomputer Power, IthacaGoogle Scholar
  88. Tinner W, Hu FS (2003) Size parameters, size-class distribution and area-number relationship of microscopic charcoal: relevance for fire reconstruction. Holocene 13:499–505CrossRefGoogle Scholar
  89. Tinner W, Lotter AF (2001) Central European vegetation response to abrupt climate change at 8.2 ka. Geology 29:551–554CrossRefGoogle Scholar
  90. Tinner W, Lotter AF (2006) Holocene expansions of Fagus silvatica and Abies alba in Central Europe: where are we after eight decades of debate? Quat Sci Rev 25:526–549CrossRefGoogle Scholar
  91. Tinner W, Conedera M, Ammann B, Gaggeler HW, Gedye S, Jones R, Sagesser B (1998) Pollen and charcoal in lake sediments compared with historically documented forest fires in southern Switzerland since AD 1920. Holocene 8:31–42CrossRefGoogle Scholar
  92. Tinner W, Conedera M, Gobet E, Hubschmid P, Wehrli M, Ammann B (2000) A palaeoecological attempt to classify fire sensitivity of trees in the southern Alps. Holocene 10:565–574CrossRefGoogle Scholar
  93. Tinner W, van Leeuwen JF, Colombaroli D et al (2009) Holocene environmental and climatic changes at Gorgo Basso, a coastal lake in southern Sicily, Italy. Quat Sci Rev 28:1,498–1,510CrossRefGoogle Scholar
  94. Tinner W, Beer R, Bigler C et al (2015) Late-Holocene climate variability and ecosystem responses in Alaska inferred from high-resolution multiproxy sediment analyses at Grizzly Lake. Quat Sci Rev 126:41–56CrossRefGoogle Scholar
  95. Tinner W, Vescovi E, van Leeuwen JF et al (2016) Holocene vegetation and fire history of the mountains of Northern Sicily (Italy). Veget Hist Archaeobot 25:499–519CrossRefGoogle Scholar
  96. Trachsel M, Grosjean M, Schnyder D, Kamenik C, Rein B (2010) Scanning reflectance spectroscopy (380-730 nm): a novel method for quantitative high-resolution climate reconstructions from minerogenic lake sediments. J Paleolimnol 44:979–994CrossRefGoogle Scholar
  97. Tringham R (2000) Southeastern Europe in the transition to agriculture in Europe: bridge, buffer, or mosaic. In: Price TD (ed) Europe’s first farmers. Cambridge University Press, Cambridge, pp 19–56CrossRefGoogle Scholar
  98. Valamoti SM, Kotsakis K (2007) Transitions to Agriculture in the Aegean: the archaeobotanical evidence. In: Colledge S, Connolly J (eds) The origins and spread of domestic plants in Southwest Asia and Europe. Left Coast Press, Walnut Creek, pp 75–91Google Scholar
  99. Valsecchi V, Finsinger W, Tinner W, Ammann B (2008) Testing the influence of climate, human impact and fire on the Holocene population expansion of Fagus sylvatica in the southern Prealps (Italy). Holocene 18:603–614CrossRefGoogle Scholar
  100. Van Geel B, Raspopov OM, van der Plicht J, Renssen H (1998) Solar forcing of abrupt climate change around 850 calendar years bc. In: Peister BJ, Palmer T, Bailey ME (eds) Natural catastrophes during bronze age civilisations: archaeological, geological, astronomical and cultural perspectives. BAR International Series 728. Archaeopress, Oxford, pp 162–168Google Scholar
  101. Vescovi E, Ravazzi C, Arpenti E et al (2007) Interactions between climate and vegetation during the Lateglacial period as recorded by lake and mire sediment archives in Northern Italy and Southern Switzerland. Quat Sci Rev 26:1,650–1,669CrossRefGoogle Scholar
  102. Vogel H, Wagner B, Zanchetta G, Sulpizio R, Rosén P (2010) A paleoclimate record with tephrochronological age control for the last glacial-interglacial cycle from Lake Ohrid, Albania and Macedonia. J Paleolimnol 44:295–310CrossRefGoogle Scholar
  103. Von Grafenstein U, Erlenkeuser H, Müller J, Jouzel J, Johnsen S (1998) The cold event 8200 years ago documented in oxygen isotope records of precipitation in Europe and Greenland. Clim Dyn 14:73–81CrossRefGoogle Scholar
  104. Weninger B, Alram-Stern E, Bauer E et al (2006) Climate forcing due to the 8200 cal yr bp event observed at Early Neolithic sites in the eastern Mediterranean. Quat Res 66:401–420CrossRefGoogle Scholar
  105. Wijmstra TA, Smit A (1976) Palynology of the middle part (30-78 metres) of the 120 m deep section in northern Greece (Macedonia). Plant Biol 25:297–312Google Scholar
  106. Williams JW, Post DM, Cwynar LC, Lotter AF, Levesque AJ (2002) Rapid and widespread vegetation responses to past climate change in the North Atlantic region. Geology 30:971–974CrossRefGoogle Scholar
  107. Willis KJ (1992) The late quaternary vegetational history of northwest Greece. New Phytol 121:119–138CrossRefGoogle Scholar
  108. Ziegler M, Jilbert T, De Lange GJ, Lourens LJ, Reichart G (2008) Bromine counts from XRF scanning as an estimate of the marine organic carbon content of sediment cores. Geochem Geophys Geosyst. Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Plant SciencesUniversity of BernBernSwitzerland
  2. 2.Oeschger Centre for Climate Change ResearchUniversity of BernBernSwitzerland
  3. 3.Institute of Geological SciencesUniversity of BernBernSwitzerland
  4. 4.Institute of Archaeological SciencesUniversity of BernBernSwitzerland
  5. 5.Institute of GeographyUniversity of BernBernSwitzerland
  6. 6.Faculty of Forestry and Natural EnvironmentAristotle University of ThessalonikiThessalonikiGreece

Personalised recommendations