Advertisement

Compositional turnover and variation in Eemian pollen sequences in Europe

  • Vivian A. FeldeEmail author
  • Suzette G. A. Flantua
  • Cathy R. Jenks
  • Blas M. Benito
  • Jacques-Louis de Beaulieu
  • Petr Kuneš
  • Donatella Magri
  • Dorota Nalepka
  • Bjørg Risebrobakken
  • Cajo J. F. ter Braak
  • Judy R. M. Allen
  • Wojciech Granoszewski
  • Karin F. Helmens
  • Brian Huntley
  • Ona Kondratienė
  • Laimdota Kalniņa
  • Mirosława Kupryjanowicz
  • Małgorzata Malkiewicz
  • Alice M. Milner
  • Małgorzata Nita
  • Bożena Noryśkiewicz
  • Irena A. Pidek
  • Maurice Reille
  • J. Sakari Salonen
  • Vaida Šeirienė
  • Hanna Winter
  • Polychronis C. Tzedakis
  • H. John B. Birks
Short Communication

Abstract

The Eemian interglacial represents a natural experiment on how past vegetation with negligible human impact responded to amplified temperature changes compared to the Holocene. Here, we assemble 47 carefully selected Eemian pollen sequences from Europe to explore geographical patterns of (1) total compositional turnover and total variation for each sequence and (2) stratigraphical turnover between samples within each sequence using detrended canonical correspondence analysis, multivariate regression trees, and principal curves. Our synthesis shows that turnover and variation are highest in central Europe (47–55°N), low in southern Europe (south of 45°N), and lowest in the north (above 60°N). These results provide a basis for developing hypotheses about causes of vegetation change during the Eemian and their possible drivers.

Keywords

Detrended canonical correspondence analysis Extrinsic and intrinsic processes Inertia Last interglacial dataset Multivariate regression trees Neutral processes Principal curves 

Notes

Acknowledgements

We thank Konrad Wolowski for granting us access to the Polish Pleistocene Pollen Database. We are also very grateful to the European Pollen Database (http://www.europeanpollendatabase.net/) and the invaluable work of the EPD data contributors and the EPD community for making EPD data publicly available. HJBB is indebted to Hilary Birks for many valuable discussions. HJBB, SGAF, and CRJ are supported by the ERC Advanced Grant 741413 Humans on Planet Earth (HOPE). VAF is supported by IGNEX-eco (6166) funded by VISTA—a basic research program in collaboration between The Norwegian Academy of Science and Letters, and Equinor; BB and BR are supported by NFR project IGNEX (249894). This paper is a contribution to the IGNEX and IGNEX-eco projects.

Supplementary material

334_2019_726_MOESM1_ESM.docx (1011 kb)
Supplementary material 1 (DOCX 1011 KB)

References

  1. Andersen ST (1994) History of the terrestrial environment in the Quaternary of Denmark. Bull Geol Soc Denmark 41:219–228Google Scholar
  2. Anderson MJ, Crist TO, Chase JM et al (2011) Navigating the multiple meanings of β diversity: a roadmap for the practicing ecologist. Ecol Lett 14:19–28.  https://doi.org/10.1111/j.1461-0248.2010.01552.x CrossRefGoogle Scholar
  3. Baselga A (2010) Partitioning the turnover and nestedness components of beta diversity. Glob Ecol Biogeogr 19:134–143.  https://doi.org/10.1111/j.1466-8238.2009.00490.x CrossRefGoogle Scholar
  4. Bennett KD, Tzedakis PC, Willis KJ (1991) Quaternary refugia of north European trees. J Biogeogr 18:103–115CrossRefGoogle Scholar
  5. Birks HJB (1986) Late Quaternary biotic changes in terrestrial and limnic environments, with particular reference to north west Europe. In: Berglund BE (ed) Handbook of Holocene palaeoecology and palaeohydrology. Wiley, Chichester, pp 3–65Google Scholar
  6. Birks HJB (2007) Estimating the amount of compositional change in late-Quaternary pollen-stratigraphical data. Veget Hist Archaeobot 16:197–202.  https://doi.org/10.1007/s00334-006-0079-1 CrossRefGoogle Scholar
  7. Birks HJB, Birks HH (2004) The rise and fall of forests. Science 305(5683):484–485.  https://doi.org/10.1126/science.1101357 CrossRefGoogle Scholar
  8. Brauer A, Allen JRM, Mingram J, Dulski P, Wulf S, Huntley B (2007) Evidence for last interglacial chronology and environmental change from southern Europe. Proc Natl Acad Sci USA 104:450–455.  https://doi.org/10.1073/pnas.0603321104 CrossRefGoogle Scholar
  9. Buckley LB, Jetz W (2008) Linking global turnover of species and environments. Proc Natl Acad Sci USA 105:17,836–17,841.  https://doi.org/10.1073/pnas.0803524105 CrossRefGoogle Scholar
  10. Descombes P, Vittoz P, Guisan A, Pellissier L (2017) Uneven rate of plant turnover along elevation in grasslands. Alp Bot 127:53–63.  https://doi.org/10.1007/s00035-016-0173-7 CrossRefGoogle Scholar
  11. Dutton A, Carlson AE, Long AJ et al (2015) Sea-level rise due to polar ice-sheet mass loss during past warm periods. Science 349(6244):1–9.  https://doi.org/10.1126/science.aaa4019 CrossRefGoogle Scholar
  12. Fischer H, Meissner KJ, Mix AC et al (2018) Palaeoclimate constraints on the impact of 2 °C anthropogenic warming and beyond. Nat Geosci 11:474–485.  https://doi.org/10.1038/s41561-018-0146-0 CrossRefGoogle Scholar
  13. Harting P (1874) De bodem van het Eemdal. Verslagen en Mededelingen van de Koninklijke Academie van Wetenschappen. Afdeling Naturkunde II 8:282–290Google Scholar
  14. Helmens KF (2014) The Last Interglacial-Glacial cycle (MIS 5-2) re-examined based on long proxy records from central and northern Europe. Quat Sci Rev 86:115–143.  https://doi.org/10.1016/j.quascirev.2013.12.012 CrossRefGoogle Scholar
  15. Iversen J (1960) Problems of the early post-glacial forest development in Denmark. Danmarks Geologiske Undersøgelse 4. række, 4, nr. 3. Reitzel, KøbenhavnGoogle Scholar
  16. Jackson ST, Blois JL (2015) Community ecology in a changing environment: perspectives from the Quaternary. Proc Natl Acad Sci USA 112:4,915-4,921.  https://doi.org/10.1073/pnas.1403664111
  17. Jarzyna MA, Finley AO, Porter WF, Maurer BA, Beier CM, Zuckerberg B (2014) Accounting for the space-varying nature of the relationships between temporal community turnover and the environment. Ecography 37:1,073–1,083.  https://doi.org/10.1111/ecog.00747 Google Scholar
  18. Jessen K, Milthers V (1928) Stratigraphical and paleontological studies of interglacial fresh-water deposits in Jutland and northwest Germany. In: Danmarks Geologiske Undersøgelse 2. Raekke, nr. 48. Reitzel, KøbenhavnGoogle Scholar
  19. Kühl N (2003) Die Bestimmung botanisch-klimatologischer Transferfunktionen und die Rekonstruktion des bodennahen Klimazustandes in Europa während der Eem-Warmzeit. Dissertationes Botanicæ 375. Borntraeger, StuttgartGoogle Scholar
  20. Kukla GJ, Bender ML, de Beaulieu J-L, Bond G, Broecker WS, Cleveringa P, Gavin JE, Herbert TD, Imbrie J, Jouzel J, Keigwin LD, Knudsen K-L, McManus JF, Merkt J, Muhs DR, Müller H, Poore RZ, Porter SC, Seret G, Shackleton NJ, Turner C, Tzedakis PC, Winograd IJ (2002) Last interglacial climates. Quat Res 58:2–13.  https://doi.org/10.1006/qres.2001.2316 CrossRefGoogle Scholar
  21. Kupryjanowicz M, Nalepka D, Pidek IA et al (2018) The east-west migration of trees during the Eemian Interglacial registered on isopollen maps of Poland. Quat Int 467:178–191.  https://doi.org/10.1016/j.quaint.2017.08.034 CrossRefGoogle Scholar
  22. Maher LJ, Heiri O, Lotter AF (2012) Assessment of uncertainties associated with palaeolimnological laboratory methods and microfossil analysis. In: Birks HJB, Lotter AF, Juggins S, Smol JP (eds) Tracking environmental change using lake sediments, vol 5. Data handling and numerical techniques. Springer, Dordrecht, pp 143–166.  https://doi.org/10.1007/978-94-007-2745-8_6 CrossRefGoogle Scholar
  23. Milner AM, Müller UC, Roucoux KH et al (2013) Environmental variability during the Last Interglacial: a new high-resolution pollen record from Tenaghi Philippon, Greece. J Quat Sci 28:113–117.  https://doi.org/10.1002/jqs.2617 CrossRefGoogle Scholar
  24. Müller H (1974) Pollenanalytische Untersuchungen und Jahresschichtenzählungen an der holsteinzeitlichen Kieselgur von Munster-Breloh. Geol Jb A21:107–140Google Scholar
  25. Salonen JS, Helmens KF, Brendryen J et al (2018) Abrupt high-latitude climate events and decoupled seasonal trends during the Eemian. Nat Commun 9:2851.  https://doi.org/10.1038/s41467-018-05314-1 CrossRefGoogle Scholar
  26. Sánchez Goñi MF, Bakker P, Desprat S et al (2012) European climate optimum and enhanced Greenland melt during the Last Interglacial. Geology 40:627–630.  https://doi.org/10.1130/G32908.1 CrossRefGoogle Scholar
  27. Shackleton NJ, Sánchez Goñi MF, Pailler D, Lancelot Y (2003) Marine Isotope Substage 5e and the Eemian interglacial. Glob Planet Chang 36:151–155.  https://doi.org/10.1016/S0921-8181(02)00181-9 CrossRefGoogle Scholar
  28. Simpson GL, Birks HJB (2012) Statistical learning in palaeolimnology. In: Birks HJB, Lotter AF, Juggins S, Smol JP (eds) Tracking environmental change using lake sediments, vol 5. Data handling and numerical techniques. Springer, Dordrecht, pp 249–327.  https://doi.org/10.1007/978-94-007-2745-8_9 CrossRefGoogle Scholar
  29. Šmilauer P, Lepš J (2014) Multivariate analysis of ecological data using Canoco 5. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  30. ter Braak CJF, Prentice IC (1988) A theory of gradient analysis. Adv Ecol Res 18:271–317CrossRefGoogle Scholar
  31. ter Braak CJF, Šmilauer P (2012) Canoco Reference Manual and User’s Guide: software for ordination (version 5.0). Microcomputer Power, IthacaGoogle Scholar
  32. ter Braak CJF, Verdonschot PFM (1995) Canonical correspondence analysis and related multivariate methods in aquatic ecology. Aquat Sci 57:255–289CrossRefGoogle Scholar
  33. Tuomisto H (2010) A diversity of beta diversities: straightening up a concept gone awry, part 2: quantifying beta diversity and related phenomena. Ecography 33:23–45.  https://doi.org/10.1111/j.1600-0587.2009.06148.x CrossRefGoogle Scholar
  34. Tzedakis PC (2007a) Pollen records, last interglacial of Europe. In: Elias SA (ed) Encyclopedia of Quaternary science, vol 3. Elsevier, Amsterdam pp 2597–2605CrossRefGoogle Scholar
  35. Tzedakis PC (2007b) Seven ambiguities in the Mediterranean palaeoenvironmental narrative. Quat Sci Rev 26:2,042–2,066.  https://doi.org/10.1016/j.quascirev.2007.03.014 CrossRefGoogle Scholar
  36. Tzedakis PC, Andrieu V, de Beaulieu JL et al (2001) Establishing a terrestrial chronological framework as a basis for biostratigraphical comparisons. Quat Sci Rev 20:1,583–1,592CrossRefGoogle Scholar
  37. Tzedakis PC, Channell JET, Hodell DA, Kleiven HF, Skinner LC (2012) Determining the natural length of the current interglacial. Nat Geosci 5:138–141.  https://doi.org/10.1038/ngeo1358 CrossRefGoogle Scholar
  38. Tzedakis PC, Emerson BC, Hewitt GM (2013) Cryptic or mystic? Glacial tree refugia in northern Europe. Trends Ecol Evol 28:696–704.  https://doi.org/10.1016/j.tree.2013.09.001 CrossRefGoogle Scholar
  39. Tzedakis PC, Drysdale RN, Margari V et al (2018) Enhanced climate instability in the North Atlantic and southern Europe during the Last Interglacial. Nat Commun 9:4235.  https://doi.org/10.1038/s41467-018-06683-3 CrossRefGoogle Scholar
  40. Wardle DA, Bardgett RD, Walker LR, Peltzer DA, Lagerström A (2008) The response of plant diversity to ecosystem retrogression: evidence from contrasting long-term chronosequences. Oikos 117:93–103.  https://doi.org/10.1111/j.2007.0030-1299.16130.x CrossRefGoogle Scholar
  41. Williams JW, Blois JL, Shuman BN (2011a) Extrinsic and intrinsic forcing of abrupt ecological change: case studies from the late Quaternary. J Ecol 99:664–677.  https://doi.org/10.1111/j.1365-2745.2011.01810.x CrossRefGoogle Scholar
  42. Zagwijn WH (1996) An analysis of Eemian climate in western and central Europe. Quat Sci Rev 15:451–469CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Biological SciencesUniversity of BergenBergenNorway
  2. 2.Aix Marseille Université, Avignon Université, CNRS, IRD, IMBEAix-en-ProvenceFrance
  3. 3.Department of Botany, Faculty of ScienceCharles UniversityPragueCzech Republic
  4. 4.Department of Environmental BiologySapienza University of RomeRomeItaly
  5. 5.Department of Palaeobotany, W. Szafer Institute of BotanyPolish Academy of SciencesKrakówPoland
  6. 6.NORCE Norwegian Research Centre, Bjerknes Centre for Climate ResearchBergenNorway
  7. 7.BiometrisWageningen University and ResearchWageningenThe Netherlands
  8. 8.Department of BiosciencesDurham UniversityDurhamUK
  9. 9.Polish Geological Institute, National Research InstituteKrakówPoland
  10. 10.Department of Physical Geography and the Bolin Centre for Climate ResearchStockholm UniversityStockholmSweden
  11. 11.Nature Research CentreInstitute of Geology and GeographyVilniusLithuania
  12. 12.Faculty of Geography and Earth SciencesUniversity of LatviaRigaLatvia
  13. 13.Department of Palaeobotany, Institute of BiologyUniversity of BiałystokBiałystokPoland
  14. 14.Laboratory of Paleobotany, Department of Stratigraphical Geology, Institute of Geological SciencesUniversity of WrocławWrocławPoland
  15. 15.Department of GeographyRoyal Holloway, University of LondonEghamUK
  16. 16.Department of Fundamental Geology, Faculty of Earth SciencesUniversity of SilesiaSosnowiecPoland
  17. 17.Faculty of Earth SciencesNicolaus Copernicus University in ToruńToruńPoland
  18. 18.Faculty of Earth Sciences and Spatial ManagementM. Curie Skłodowska UniversityLublinPoland
  19. 19.Department of Geosciences and GeographyUniversity of HelsinkiHelsinkiFinland
  20. 20.Polish Geological Institute and National Research InstituteWarszawaPoland
  21. 21.Environmental Change Research Centre, Department of GeographyUniversity College LondonLondonUK
  22. 22.Bjerknes Centre for Climate ResearchUniversity of BergenBergenNorway

Personalised recommendations