Skip to main content

Advertisement

Log in

The dynamics of a non-forested stand in the Krušné Mts.: the effect of a short-lived medieval village on the local environment

  • Original Article
  • Published:
Vegetation History and Archaeobotany Aims and scope Submit manuscript

Abstract

Medieval vegetation–human–climate interactions were studied from a sediment profile situated in the centre of a short-lived medieval village located above 800 m a.s.l. on the ridge of the Krušné Mts., NW Bohemia, Central Europe. Analyses of pollen, seeds/fruits, micro- and macro-charcoals, diatoms and concentrations of microelements in connection with written sources revealed a significant human-induced deforestation in the second half of the 14th century. This deforestation occurred sooner than supposed and the area did not revert after ad 1347 as elsewhere in Europe. Arable fields probably enabled basic self-sustaining cultivation of winter cereals even at such elevations in the climatically favourable years of the Medieval Warm Period. The village presumably collapsed due to a combination of weather fluctuations at the onset of the Little Ice Age, simultaneous socioeconomic stagnation in the Czech Lands and exploitation of the surrounding forest. The dynamics of wet stand vegetation and Calthion palustris montane wet meadows were driven by fluctuating human and grazing impacts. Annual and biennial herbaceous species that peaked after village abandonment were rapidly replaced by Filipendula ulmaria and Salix stands. The secondary forest developed towards Picea stands. Only later, mesic montane meadows of medium tall grasses combined with Meum athamanticum and mountain dry pastures developed on nutrient poor patches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abraham V, Kuneš P, Petr L et al (2016) A pollen-based quantitative reconstruction of the Holocene vegetation updates a perspective on the natural vegetation in the Czech Republic and Slovakia. Preslia 88:409–434

    Google Scholar 

  • Alfonso I (2007) Rural history of medieval European societies: trends and perspectives. The medieval countryside, vol 1. Brepols, Turnhout

    Google Scholar 

  • Balátová-Tuláčková E (1981) Phytozönologische und synökologische Charakteristik der Feuchtwiesen NW-Böhmens. Rozpravy ČSAV, Řada matematických a přírodních věd 91:1–91

    Google Scholar 

  • Beck R (2004) Unterfinning: Ländliche Welt vor Anbruch der Moderne. C. H. Beck, München

    Google Scholar 

  • Behre K-E (1981) The interpretation of anthropogenic indicators in pollen diagrams. Pollen Spores 23:225–245

    Google Scholar 

  • Beug H-J (2004) Leitfaden der Pollenbestimmung für Mitteleuropa und angrenzende Gebiete. Pfeil, München

    Google Scholar 

  • Bradshaw RHW, Kito N, Giesecke T (2010) Factors influencing the Holocene history of Fagus. For Ecol Manag 259:2,204–2,212

    Google Scholar 

  • Brázdil R, Kotyza O (1995) History of weather and climate in the Czech lands I: period 1000–1500. Zürcher Geographische Schriften, vol 62. Geographisches Institut ETH, Zürich

    Google Scholar 

  • Brázdil R, Kotyza O (2000) History of weather and climate in the Czech Lands IV: utilisation of economic sources for the study of climate fluctuation in the Louny Region in the fifteenth–seventeenth centuries. Masaryk University, Brno

    Google Scholar 

  • Brázdil R, Dobrovolný P, Trnka M et al (2013) Droughts in the Czech Lands, 1090–2012 ad. Clim Past 9:1,985–2,002

    Google Scholar 

  • Bronk Ramsey C (2008) Deposition models for chronological records. Quat Sci Rev 27:42–60

    Google Scholar 

  • Bronk Ramsey C (2009) Bayesian analysis of radiocarbon dates. Radiocarbon 51:337–360

    Google Scholar 

  • Bronk Ramsey C, Lee S (2013) Recent and planned developments of the program OxCal. Radiocarbon 552:720–730

    Google Scholar 

  • Büntgen U, Tegel W, Nicolussi K et al (2011) 2500 years of European climate variability and human susceptibility. Science 331:578–582

    Google Scholar 

  • Cailleret M, Davi H (2011) Effects of climate on diameter growth of co-occurring Fagus sylvatica and Abies alba along an altitudinal gradient. Trees Struct Funct 25:265–276

    Google Scholar 

  • Čapek L, Holata L (2017) General overview of medieval settlement research in the Czech Republic: emergence and development of the field, main issues and adoption of landscape context. Revista ArkeoGazte Aldizkaria 7:267–320

    Google Scholar 

  • Cappers RTJ, Bekker RM, Jans JEA (2006) Digital seed atlas of the Netherlands. Groningen archaeological studies, vol 4. Barkhuis Publishing, Eelde

    Google Scholar 

  • Černá E, Klír T (2014) The settlement of the Ore Mountains in the Later Middle Ages and Early Modern Period. The context and objectives of interdisciplinary research. In: Boháčová I, Sommer P (eds) Medieval Europe in motion. In honour of Jan Klápště. Institute of Archaeology of the CAS, Prague, v.v.i., Praha, pp 105–118

    Google Scholar 

  • Chytrý M (2012) Vegetation of the Czech Republic: diversity, ecology, history and dynamics. Preslia 84:427–504

    Google Scholar 

  • Cílová Z, Woitsch J (2012) Potash—a key raw material of glass batch for Bohemian glasses from 14th–17th centuries? J Archaeol Sci 39:371–380

    Google Scholar 

  • Crkal J (2015) Výsluní. In: Urban M (ed) Horní města Krušných hor. Fornica Publishing, Sokolov, pp 300–319

    Google Scholar 

  • Crkal J, Černá E (2009) Nové objevy v Krušných horách–zaniklé středověké sklárny na k. ú. Výsluní, okr. Chomutov. Archaeol Hist 34:503–521

    Google Scholar 

  • Denys L (1991) A check-list of the diatoms in the Holocene deposits of the western Belgian coastal plain with a survey of their apparent ecological requirements. 1. Introduction, ecological code and complete list. Service Géologique de Belgique 246:1–41

    Google Scholar 

  • Dobrovolný P, Brázdil R, Kotyza O, Valášek H (2010) Extreme summer and winter temperatures in the Czech Lands after A.D. 1500 and their Central European context. Geografie 115:266–283

    Google Scholar 

  • Dobrovolný P, Rybníček M, Kolář T et al (2015) A tree-ring perspective on temporal changes in the frequency and intensity of hydroclimatic extremes in the territory of the Czech Republic since 761 ad. Clim Past 11:1,453–1,466

    Google Scholar 

  • Fægri K, Iversen J (1989) Textbook of Pollen analysis, 4th edn (revised by Fægri K, Kaland PE, Krzywinski K.), Wiley, Chichester

  • Faria JC (2009) Resources of Tinn-R GUI/editor for R environment. UESC, Ilheus

    Google Scholar 

  • Fott B (1954) Pleurax, synthetická pryskyrice pro preparaci rozsivek. Preslia 26:163–194

    Google Scholar 

  • Fott J, Vukic J, Rose NL (1998) The spatial distribution of characterized fly-ash particles and trace metals in lake sediments and catchment mosses: Czech Republic. Water Air Soil Pollut 106:241–261

    Google Scholar 

  • Fredskild B (1988) Agriculture in a marginal area—South Greenland from the Norse Landnam (A.D. 985) to the present (A.D. 1985). In: Birks HH, Birks HJB, Kaland PE, Moe D (eds) The cultural landscape—past, present and future. Cambridge University Press, Cambridge, pp 381–393

    Google Scholar 

  • Gaillard MJ (2013) Pollen methods and studies, archaeological applications. In: Elias SA, Mock CJ (eds) Encyclopedia of quaternary science, 2nd edn. Elsevier, Oxford, pp 880–903

    Google Scholar 

  • Gaillard MJ, Sugita S, Mazier F et al (2010) Holocene land-cover reconstructions for studies on land cover-climate feedbacks. Clim Past 6:483–499

    Google Scholar 

  • Giesecke T, Bennett KD (2004) The Holocene spread of Picea abies (L.) Karst. in Fennoscandia and adjacent areas. J Biogeogr 31:1,523–1,548

    Google Scholar 

  • Giesecke T, Hickler T, Kunkel T et al (2007) Towards an understanding of the Holocene distribution of Fagus sylvatica L. J Biogeogr 34:118–131

    Google Scholar 

  • Gissel S, Juttikkala E, Österberg E, Sandnes J, Teitsson B (1981) Desertion and land colonization in the Nordic countries c. 1300–1600: comparative report from the Scandinavian research project on deserted farms and villages. Almqvist & Wiksell International, Stockholm

    Google Scholar 

  • Griffin JJ, Goldberg ED (1979) Morphologies and origin of elemental carbon in the environment. Science 206:563–565

    Google Scholar 

  • Grimm EC (1987) CONISS: a FORTRAN 77 program for stratigraphically constrained cluster analysis by the method of incremental sum of squares. Comput Geosci 13:13–35

    Google Scholar 

  • Grimm EC (2011) Tilia. Version 1.7.16. Illinois State Museum, Springfield

    Google Scholar 

  • Hájková P, Hájek M, Blažková D et al (2010) Meadows and mesic pastures. In: Chytrý M (ed) Vegetation of the Czech Republic 1: grassland and heathland vegetation. Academia, Praha

    Google Scholar 

  • Hicks S (2006) When no pollen does not mean no trees. Veg Hist Archaeobot 15:253–261

    Google Scholar 

  • Hofmann F (1939) Geschichtes Memorandum über die Freie Bergstadt Sonnenberg. Erzg., Sudetengau

    Google Scholar 

  • Hoskins W (1988) The making of the English landscape. Hodder and Stoughton, London

    Google Scholar 

  • Houfková P, Bumerl J, Pospíšil L et al (2015) Origin and development of long-strip field patterns: a case study of an abandoned medieval village in the Czech Republic. Catena 135:83–91

    Google Scholar 

  • Houk V (2003) Atlas of freshwater centric diatoms with a brief key and descriptions, part 1: Melosiraceae, Orthoseiraceae, Paraliaceae and Aulacoseiraceae. Czech Phycol Suppl 1:1–27

    Google Scholar 

  • Hürkamp K, Raab T, Volkel J (2009) Two and three-dimensional quantification of lead contamination in alluvial soils of a historic mining area using field portable X-ray fluorescence (FPXRF) analysis. Geomorphology 110:28–36

    Google Scholar 

  • Hylmarová L, Klír T, Černá E (2013) Iron objects from the defunct village of Spindelbach, Krušné Hory Mountains. Results of metal detecting. Archaeol Hist 38:569–609

    Google Scholar 

  • Jankovská V, Kuneš P, van der Knaap WO (2007) 1. Fláje–Kiefern (Krušné Hory Mountains): Late Glacial and Holocene vegetation development. Grana 46:214–216

    Google Scholar 

  • Jehlík V (1971) Die Vegetationsbesiedlung der Dorftrümmer in Nordböhmen. Eine Studie über synanthrope Vegetation und Flora. Rozpravy Československé akademie věd 81. Academia, Praha

    Google Scholar 

  • Jump AS, Hunt JM, Martinez-Izquierdo JA, Penuelas J (2006) Natural selection and climate change: temperature-linked spatial and temporal trends in gene frequency in Fagus sylvatica. Mol Ecol 15:3,469–3,480

    Google Scholar 

  • Kalnicky DJ, Singhvi R (2001) Field portable XRF analysis of environmental samples. J Hazard Mater 83:93–122

    Google Scholar 

  • Kaplan JO, Krumhardt KM, Zimmermann N (2009) The prehistoric and preindustrial deforestation of Europe. Quat Sci Rev 28:3,016–3,034

    Google Scholar 

  • Katz N, Katz S, Kipiani M (1965) Atlas and keys of fruits and seeds occuring in the quaternary deposits of the USSR. Academy of Science of the USSR, Nauka, Moscow

    Google Scholar 

  • Kenzler H (2012) Die hoch- und spätmittelalterliche Besiedlung des Erzgebirges: Strategien zur Kolonisation eines landwirtchaftlichen Ungunstraumes. Habelt, Bonn

    Google Scholar 

  • Kitsikopoulos H (2011) Agrarian change and crisis in Europe, 1200–1500. Routledge research in medieval studies. Routledge, New York

    Google Scholar 

  • Klápště J (2016) The archaeology of Prague and the medieval Czech lands. Studies in the archaeology of medieval Europe. Equinox Publishing, Sheffield, pp 1100–1600

    Google Scholar 

  • Klír T (2016) Research of deserted Medieval villages conducted by the Institute of Archaeology at Charles University in Prague. In: Nocuń P et al (eds) Wieś zaginiona. Stan i perspektywy badań. Monografie i materiały MGPE 5. Muzeum “Górnośląski Park Etnograficzny w Chorzowie”, Chorzów, pp 17–59

    Google Scholar 

  • Kočár P, Kočárová R, Petr L et al (2014) Pflanzenreste aus den hochmittelalterlichen Bergbaustandorten im Erzgebirge. Archeomontan 29:119–135

    Google Scholar 

  • Kozáková R, Pokorný P, Havrda J, Jankovská V (2009) The potential of pollen analyses from urban deposits: multivariate statistical analysis of a data set from the medieval city of Prague, Czech Republic. Veg Hist Archaeobot 18:477–488

    Google Scholar 

  • Kozáková R, Pokorný P, Mařík J et al (2014) Early to high medieval colonization and alluvial landscape transformation of the Labe valley (Czech Republic): evaluation of archaeological, pollen and macrofossil evidence. Veg Hist Archaeobot 23:701–718

    Google Scholar 

  • Kozáková R, Pokorný P, Peša V et al (2015) Prehistoric human impact in the mountains of Bohemia. Do pollen and archaeological data support the traditional scenario of a prehistoric “wilderness”? Rev Palaeobot Palynol 220:29–43

    Google Scholar 

  • Krammer K, Lange-Bertalot H (1986) Bacillariophyceae. 1. Teil: Naviculaceae. In: Ettl H, Gerloff J, Heinig H, Mollenhauer D (eds) Süsswasserflora von Mitteleuropa, vol 2/1. Gustav Fischer, Stuttgart

    Google Scholar 

  • Krammer K, Lange-Bertalot H (1988) Bacillariophyceae. 2. Teil: Bacillariaceae, Epithemiaceae, Surirellaceae. In: Ettl H, Gerloff J, Heinig H, Mollenhauer D (eds) Süsswasserflora von Mitteleuropa, vol 2/2. Gustav Fischer, Stuttgart

    Google Scholar 

  • Krammer K, Lange-Bertalot H (1991a) Bacillariophyceae. 4. Teil: Achnanteaceae, Kritische Ergänzungen zu Navicula (Lineolateae) und Gomphonema. Gesamtliteraturverzeichnis Teil 1–4. In: Ettl H, Gerloff J, Heinig H, Mollenhauer D (eds) Süsswasserflora von Mitteleuropa, vol 2/4. Gustav Fischer, Stuttgart

    Google Scholar 

  • Krammer K, Lange-Bertalot H (1991b) Bacillariophyceae. Teil 3: Centrales, Fragilariaceae, Eunotiaceae. In: Ettl H, Gerloff J, Heinig H, Mollenhauer D (eds) Süsswasserflora von Mitteleuropa, vol 2/3. Gustav Fischer, Stuttgart

    Google Scholar 

  • Kratochvíl F (1953) Zpráva o geologickém mapování a rudních výskytech v okolí Výsluní u Chomutova. Unpublished report, Geofond Praha, p P5042

  • Kreuz A, Schäfer E (2002) A new archaeobotanical database program. Veg Hist Archaeobot 11:177–180

    Google Scholar 

  • Kubát K, Hrouda L, Chrtek J (2002) Klíčke květeně České republiky. Academia, Praha

    Google Scholar 

  • Legendre P, Legendre L (1998) Numerical ecology. Elsevier, Amsterdam

    Google Scholar 

  • MacArthur RH (1957) On the relative abundance of bird species. Proc Natl Acad Sci USA 43:293–295

    Google Scholar 

  • Magyari EK, Kuneš P, Jakab G et al (2014) Late Pleniglacial vegetation in eastern-central Europe: are there modern analogues in Siberia? Quat Sci Rev 95:60–79

    Google Scholar 

  • Matzat W (1988) Long strip field layouts and their later subdivisions—a comparison of English and German cases. Geogr Ann B 70:133–147

    Google Scholar 

  • Maur E (1989) Ein Beitrag zur demographischen Problematik Böhmens in vorhussitischer Zeit (1346–1419). Acta Universitatis Carolinae–Philosophica et historica. Stud Hist 34:7–71

    Google Scholar 

  • Nocuń P, Przybyła-Dumin A, Fokt K (2016) Wieś zaginiona. Stan i perspektywy badań. Monografie i materiały MGPE 5. Muzeum “Górnośląski Park Etnograficzny w Chorzowie”, Chorzów

    Google Scholar 

  • Opravil E (1969) Synantropní rostliny dvou středověkých objektů ze SZ Čech. Preslia 41:248–257

    Google Scholar 

  • Pickett STA, McDonnell MJ (1989) Seed bank dynamics in temperate deciduous forest. In: Leck MA (ed) Ecology of soil seed banks. Academic Press, San Diego, pp 123–147

    Google Scholar 

  • Pokorná A, Dreslerová D, Křivánková D (2011) Archaeobotanical database of the Czech Republic, an interim report. IANSA 2:49–53

    Google Scholar 

  • Pokorná A, Houfková P, Novák J et al (2014) The oldest Czech fishpond discovered? An interdisciplinary approach to reconstruction of local vegetation in mediaeval Prague suburbs. Hydrobiologia 730:191–213

    Google Scholar 

  • Pokorná A, Kočár P, Novák J et al (2018) Ancient and Early Medieval man-made habitats in the Czech Republic: colonization history and vegetation changes. Preslia 90:171–193

    Google Scholar 

  • Pokorný P, Chytrý M, Juřičková L et al (2015) Mid-Holocene bottleneck for central European dry grasslands: did steppe survive the forest optimum in northern Bohemia, Czech Republic? Holocene 25:716–726

    Google Scholar 

  • Poschlod P (2015) Geschichte der Kulturlandschaft. Ulmer, Stuttgart

    Google Scholar 

  • Profous A (1951) Místní jména v Čechách. Jejich vznik, původ, význam a změny III. Nakl. Československé akademie věd, Prague

    Google Scholar 

  • Punt W et al (1976–2009) The Northwest European Pollen Flora (NEPF) Vol I (1976), Vol II (1980), Vol III (1981), Vol IV (1984) Vol V (1988), Vol VI (1991), Vol VII (1996), Vol VIII (2003), Vol IX (2009). Elsevier, Amsterdam

    Google Scholar 

  • R Development Core Team (2010) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Reimer PJ, Bard E, Bayliss A et al (2013) Intcal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55:1,869–1,887

    Google Scholar 

  • Rose NL (2001) Fly-ash particles. In: Last WM, Smol JP (eds) Tracking environmental change using lake sediments. Physical and geochemical methods, vol 2. Kluwer Academic Publisher, Dordrecht, pp 319–349

    Google Scholar 

  • Rott E, Pipp E, Pfister P et al (1999) Indikationslisten für Aufwuchsalgen in österreichischen Fliessgewässern, Teil 2: Trophieindikation. Bundesministerium für Land- und Forstwirtschaft, Wien

    Google Scholar 

  • Schuster P (1999) Die Krise des Spätmittelalters. Zur Evidenz eines sozial- und wirtschaftsgeschichtlichen Paradigmas in der Geschichtsschreibung des 20. Jahrhunderts Hist Z 269:19–55

    Google Scholar 

  • Schuster R, Oberhuber W (2013) Age-dependent climate-growth relationships and regeneration of Picea abies in a drought-prone mixed-coniferous forest in the Alps. Can J For Res 43:609–618

    Google Scholar 

  • Schweingruber FH (1990) Mikroskopische Holzanatomie. Formenspektren mitteleuropäischer Stamm- und Zweighölzer zur Bestimmung von rezentem und subfossilem Material, vol 3. Aufl. Eidgenössische Anstalt für das Forstliche Versuchswesen, Birmensdorf

    Google Scholar 

  • Seppä H, Hicks S (2006) Integration of modern and past pollen accumulation rate (PAR) records across the arctic tree-line: a method for more precise vegetation reconstructions. Quat Sci Rev 25:1,501–1,516

    Google Scholar 

  • Stockmarr J (1971) Tablets with spores used in absolute pollen analysis. Pollen Spores 13:615–621

    Google Scholar 

  • Sveinbjarnardóttir G (1992) Farm abandonment in medieval and post-medieval Iceland: an interdisciplinary study. Oxbow Books, Oxford

    Google Scholar 

  • Sweeney CA (2004) A key for the identification of stomata of the native conifers of Scandinavia. Rev Palaeobot Palynol 128:281–290

    Google Scholar 

  • Szabó P, Kuneš P, Svobodová-Svitavská H et al (2017) Using historical ecology to reassess the conservation status of coniferous forests in Central Europe. Conserv Biol 31:150–160

    Google Scholar 

  • Tolasz R, Míková T, Valeriánová A, Voženílek V (2007) Climate atlas of Czechia. Czech Hydrometeorological Institute, Prague

    Google Scholar 

  • Troels-Smith JA (1955) Karakterisering af løse jordarter (Characterization of unconsolidated sediments). Danmarks Geologiske Undersøgelse 3:1–73

    Google Scholar 

  • Umbanhowar CE, McGrath MJ (1998) Experimental production and analysis of microscopic charcoal from wood, leaves and grasses. Holocene 8:341–346

    Google Scholar 

  • Van Hees AFM (1997) Growth and morphology of pedunculate oak (Quercus robur L) and beech (Fagus sylvatica L) seedlings in relation to shading and drought. Ann Sci For 54:9–18

    Google Scholar 

  • Van Dam H, Mertens A, Sinkeldam J (1994) A coded checklist and ecological indicator values of freshwater diatoms from The Netherlands. Aquat Ecol 28:117–133

    Google Scholar 

  • Van der Knaap WO (2009) Estimating pollen diversity from pollen accumulation rates: a method to assess taxonomic richness in the landscape. Holocene 19:159–163

    Google Scholar 

  • Van der Knaap WO, van Leeuwen JF, Svitavská-Svobodová H et al (2010) Annual pollen traps reveal the complexity of climatic control on pollen productivity in Europe and the Caucasus. Veg Hist Archaeobot 19:285–307

    Google Scholar 

  • Veron A, Novak M, Brizova E, Stepanova M (2014) Environmental imprints of climate changes and anthropogenic activities in the Ore Mountains of Bohemia (Central Europe) since 13 cal. kyr BP. Holocene 24:919–931

    Google Scholar 

  • Vojta J (2007) Relative importance of historical and natural factors influencing vegetation of secondary forests in abandoned villages. Preslia 79:223–244

    Google Scholar 

Download references

Acknowledgements

This research was supported by the project ‘PAPAVER’, Reg. no. CZ.1.07/2.3.00/20.0289, a grant from the European Regional Development Fund-Project “Creativity and Adaptability as Conditions of the Success of Europe in an Interrelated World” (no. CZ.02.1.01/0.0/0.0/16_019/0000734), and the Charles University Grant Agency, Project no. 307415. We wish to thank to Jan Mareš for help during the coring, and Kristina Uhrová with sample preparation and Keith Edwards for language corrections. We are grateful to the anonymous reviewers whose comments substantially improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petra Houfková.

Additional information

Communicated by K.-E. Behre.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (TIF 240 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Houfková, P., Horák, J., Pokorná, A. et al. The dynamics of a non-forested stand in the Krušné Mts.: the effect of a short-lived medieval village on the local environment. Veget Hist Archaeobot 28, 607–621 (2019). https://doi.org/10.1007/s00334-019-00718-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00334-019-00718-5

Keywords

Navigation