Vegetation History and Archaeobotany

, Volume 28, Issue 2, pp 105–121 | Cite as

Circumstantial evidence of non-pollen palynomorph palaeoecology: a 5,500 year NPP record from forest hollow sediments compared to pollen and macrofossil inferred palaeoenvironments

  • Renée EnevoldEmail author
  • Peter Rasmussen
  • Mette Løvschal
  • Jesper Olsen
  • Bent Vad Odgaard
Original Article


The addition of non-pollen palynomorphs (NPPs) to pollen analytical studies has improved the interpretational frame, especially concerning the local regime in anthropogenically disturbed environments. Using advanced ordination techniques this paper explores the variation of NPP-assemblages and the indicative value of individual NPP-types by comparison to independent classical proxies. Sediment samples from a forest hollow at Tårup Lund, Denmark, covering the last 5,500 years, were prepared for NPP-analysis using a non-aggressive procedure. Correlations between non-pollen palynomorphs and sediment, pollen and macrofossil inferred environmental explanatory variables were studied based on a constant counting sum of NPPs. This approach identified main drivers influencing NPP assemblage composition and indicated that a change in these drivers occurred at the onset of the Pre-Roman Iron Age. Twelve known and 12 specific, but so far unknown, NPPs correlating with the environmental variables were identified and their possible indicator value presented. The mild preparation procedure resulted in a very large dataset allowing for sub-assemblages to be explored separately. This approach indicated the potential for identifying further environmental indicators among these groups.


Non-pollen palynomorphs Mild preparation procedure Palaeoecology Celtic fields 



The study is part of a Ph.D. project at Moesgaard Museum and Aarhus University, financially supported by the Danish Ministry of Higher Education and Innovation Fond Denmark. The archaeological investigations of Tårup Lund were carried out as part of the excavations at Odense City Museums. We would like to thank Michael Vinter and Malene Refshauge Beck for enthusiastically agreeing to re-excavate in the area. Also gratitude to Mogens Bo Henriksen and Niels-Christian Clemmensen for providing access to data and advice. Most humble thanks go to Vlasta Jankovská, Olga Lepšová, Thomas Læssøe, Bas van Geel and Lyudmila Shumilovskikh for a huge help with identifications. A final thank you to two thorough reviewers for helping improve this manuscript.

Supplementary material

334_2018_687_MOESM1_ESM.xlsx (114.2 mb)
Supplementary material 1 (XLSX 116926 KB)


  1. Arnoldussen S, van der Linden M (2017) Palaeo-ecological and archaeological analysis of two Dutch Celtic fields (Zeijen-Noordse Veld and Wekerom-Lunteren): solving the puzzle of local Celtic field bank formation. Veget Hist Archaeobot 26:551–570CrossRefGoogle Scholar
  2. Bakels C (2012) Non-pollen palynomorphs from the Eemian pool Neumark-Nord 2: determining water quality and the source of high pollen-percentages of herbaceous taxa. Rev Palaeobot Palynol 186:58–61CrossRefGoogle Scholar
  3. Bakker M, van Smeerdijk DG (1982) A palaeoecological study of a late Holocene section from “het ilperveld”, western Netherlands. Rev Palaeobot Palynol 36:95–163CrossRefGoogle Scholar
  4. Balaam ND, Smith K, Wainwright GJ (1982) The Shaugh Moor Project: fourth report of environment, context and conclusions. Proc Prehist Soc 48:203–278CrossRefGoogle Scholar
  5. Ballut C, Michelin Y, Miras Y (2012) Landscape human shaping and spatial mobility of agropastoral practices in the Chaîne des Puys during historical times (Massif Central, France). Quat Int 251:97–106CrossRefGoogle Scholar
  6. Barthelmes A, de Klerk P, Prager A, Theuerkauf M, Unterseher M, Joosten H (2012) Expanding NPP analysis to eutrophic and forested sites; Significance of NPPs in a Holocene wood peat section (NE Germany). Rev Palaeobot Palynol 186:22–37CrossRefGoogle Scholar
  7. Behre K-E (1986) Anthropogenic indicators in pollen diagrams. In: Behre K-E (ed) Anthropogenic indicators in pollen diagrams. Balkema, Rotterdam, pp 237–239Google Scholar
  8. Beug H-J (2004) Leitfaden der Pollenbestimmung für Mitteleuropa und angrenzende Gebiete. Pfeil, MünchenGoogle Scholar
  9. Blackford JJ, Innes JB (2006) Linking current environments and processes to fungal spore assemblages: surface NPM data from woodland environments. Rev Palaeobot Palynol 141:179–187CrossRefGoogle Scholar
  10. Brongers JA (1976) Air photography and celtic field research in the Netherlands. Nederlandse Oudheden 6. Rijksdienst voor het Oudheidkundig Bodemonderzoek, AmersfoortGoogle Scholar
  11. Bronk Ramsey C (2008) Deposition models for chronological records. Quat Sci Rev 27:42–60CrossRefGoogle Scholar
  12. Chambers FM, Booth RK, De Vleeschouwer F et al (2012) Development and refinement of proxy-climate indicators from peats. Quat Int 268:21–33CrossRefGoogle Scholar
  13. Chevenet F, Doleadec S, Chessel D (1994) A fuzzy coding approach for the analysis of long-term ecological data. Freshw Biol 31:295–309CrossRefGoogle Scholar
  14. Cugny C, Mazier F, Galop D (2010) Modern and fossil non-pollen palynomorphs from the Basque mountains (western Pyrenees, France): the use of coprophilous fungi to reconstruct pastoral activity. Veget Hist Archaeobot 19:391–408CrossRefGoogle Scholar
  15. Dean WE (1974) Determination of carbonate and organic matter in calcareous sediments and sedimentary rocks by loss on ignition; comparison with other methods. J Sediment Res 44:242–248Google Scholar
  16. Dietre B, Gauthier É, Gillet F (2012) Modern pollen rain and fungal spore assemblages from pasture woodlands around Lake Saint-Point (France). Rev Palaeobot Palynol 186:69–89CrossRefGoogle Scholar
  17. Doyen E, Etienne D (2017) Ecological and human land-use indicator value of fungal spore morphotypes and assemblages. Veget Hist Archaeobot 26:357–367CrossRefGoogle Scholar
  18. Ejarque A, Miras Y, Riera S (2011) Pollen and non-pollen palynomorph indicators of vegetation and highland grazing activities obtained from modern surface and dung datasets in the eastern Pyrenees. Rev Palaeobot Palynol 167:123–139CrossRefGoogle Scholar
  19. Fægri K, Iversen J (1989) Textbook of pollen analysis, 4th edn. Wiley, ChichesterGoogle Scholar
  20. Feeser I, O’Connell M (2010) Late Holocene land-use and vegetation dynamics in an upland karst region based on pollen and coprophilous fungal spore analyses: an example from the Burren, western Ireland. Veget Hist Archaeobot 19:409–426CrossRefGoogle Scholar
  21. Gower JC (1975) Generalized procrustes analysis. Psychometrika 40:33–51CrossRefGoogle Scholar
  22. Hatt G (1949) Oldtidsagre. Arkæologisk-Kunsthistoriske Skrifter 2.1. Det Kongelige Danske Videnskabernes Selskab, CopenhagenGoogle Scholar
  23. Henriksen MB (2015) Datering af oldtidsagre. In: Nielsen V, Clemmensen NC (eds) Oldtidsagre i Danmark: Fyn og Langeland. Jysk Arkæologisk Selskab Skrifter 86. Universitetsforlag, Aarhus, pp 160–165Google Scholar
  24. Hill MO, Mountford JO, Roy DB, Bunce RGH (1999) Elenberg’s indicator values for British plants. ECOFACT. Technical Annex 2a:1–46Google Scholar
  25. Hyde KD, Goh T (1999) Fungi on submerged wood from the River Coln, England. Mycol Res 103:1,561–1,574CrossRefGoogle Scholar
  26. Kleyer M, Dray S, Bello F et al (2012) Assessing species and community functional responses to environmental gradients: which multivariate methods? J Veg Sci 23:805–821CrossRefGoogle Scholar
  27. Kuhry P (1985) Transgression of a raised bog across a coversand ridge originally covered with an oak—lime forest: palaeoecological study of a middle holocene local vegetational succession in the Amtsven (Northwest Germany). Rev Palaeobot Palynol 44:303–353CrossRefGoogle Scholar
  28. Legendre P, Legendre L (1998) Numerical ecology. Elsevier, New YorkGoogle Scholar
  29. Liversage D, Munro MAR, Nørberg P (1987) Studies of a buried Early Iron Age field. Acta Archaeol 56:55–84Google Scholar
  30. Montoya E (2010) Non-pollen palynomorphs from surface sediments along an altitudinal transect of the Venezuelan Andes. Palaeogeogr Palaeoclimatol Palaeoecol 297:169–183CrossRefGoogle Scholar
  31. Moore PD, Webb JA, Collinson ME (1991) Pollen analysis. Blackwell, OxfordGoogle Scholar
  32. Nielsen NH, Dalsgaard K (2017) Dynamics of celtic fields—a geoarchaeological investigation of Øster Lem Hede, Western Jutland, Denmark. Geoarchaeology 32:414–434CrossRefGoogle Scholar
  33. Nielsen V (1984) Prehistoric field boundaries in Eastern Denmark. J Danish Archaeol 3:135–163CrossRefGoogle Scholar
  34. Nielsen V (2010) Oldtidsagre i Danmark: Sjælland, Møn Og Lolland-Falster. Jysk Arkæologisk Selskab Skrifter 71. Universitetsforlag, AarhusGoogle Scholar
  35. Nielsen V, Clemmensen NC (2015) Oldtidsagre i Danmark: Fyn Og Langeland. Jysk Arkæologisk Selskab Skrifter 86. Universitetsforlag, AarhusGoogle Scholar
  36. Olsen J, Tikhomirov D, Grosen C, Heinemeier J, Klein M (2017) Radiocarbon analysis on the new AARAMS 1MV Tandetron. Radiocarbon 59:905–913CrossRefGoogle Scholar
  37. Out WA (2010) Integrated archaeobotanical analysis: human impact at the Dutch neolithic wetland site the Hazendonk. J Archaeol Sci 37:1,521–1,531CrossRefGoogle Scholar
  38. Prager A, Barthelmes A, Theuerkauf M, Joosten H (2006) Non-pollen palynomorphs from modern Alder carrs and their potential for interpreting microfossil data from peat. Rev Palaeobot Palynol 141:7–31CrossRefGoogle Scholar
  39. Prager A, Theuerkauf M, Couwenberg J, Barthelmes A, Aptroot A, Joosten H (2012) Pollen and non-pollen palynomorphs as tools for identifying alder carr deposits: a surface sample study from NE-Germany. Rev Palaeobot Palynol 186:38–57CrossRefGoogle Scholar
  40. Rasmussen P, Olsen J, Henriksen PS, Mortensen MF (2015) Oldtidsagrenes datering og vegetationshistoriske sammenhæng belyst gennem geobotaniske undersøgelser af et lille mosehul. In: Nielsen V, Clemmensen N (eds) Oldtidsagre i Danmark: Fyn Og Langeland. Jysk Arkæologisk Selskab Skrifter 86, Aarhus, pp 137–149Google Scholar
  41. Reimer PJ, Baillie MGL, Bard E et al (2009) IntCal09 and Marine09 radiocarbon age calibration curves, 0–50,000 years CAL BP. Radiocarbon 51:1,111–1,150CrossRefGoogle Scholar
  42. Revelles J, Burjachs F, van Geel B (2016) Pollen and non-pollen palynomorphs from the Early Neolithic settlement of La Dragas (Girona, Spain). Rev Palaeobot Palynol 225:1–20CrossRefGoogle Scholar
  43. Schlütz F, Shumilovskikh LS (2017) Non-pollen palynomorphs notes: 1. Type HdV-368 (Podospora-type), description of associated species, and the first key to related spore types. Rev Palaeobot Palynol 239:47–54CrossRefGoogle Scholar
  44. Shumilovskikh LS, Hopper K, Djamali M et al (2016) Landscape evolution and agro-sylvo-pastoral activities on the Gorgan Plain (NE Iran) in the last 6000 years. Holocene 26:1,676–1,691CrossRefGoogle Scholar
  45. Šmilauer P, Leps J (2014) Multivariate analysis of ecological data using Canoco 5, 2nd edn. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  46. Sugita S (1994) Pollen representation of vegetation in quaternary sediments: theory and method in patchy vegetation. J Ecol 82:881–897CrossRefGoogle Scholar
  47. Sugita S (2007a) Theory of quantitative reconstruction of vegetation I: pollen from large sites REVEALS regional vegetation composition. Holocene 17:229–241CrossRefGoogle Scholar
  48. Sugita S (2007b) Theory of quantitative reconstruction of vegetation II: all you need is LOVE. Holocene 17:243–257CrossRefGoogle Scholar
  49. Sugita S, Parshall T, Calcote R, Walker K (2010) Testing the Landscape Reconstruction Algorithm for spatially explicit reconstruction of vegetation in northern Michigan and Wisconsin. Quat Res 74:289–300CrossRefGoogle Scholar
  50. Ter Braak CJF (1987) Ordination in data analysis in community and landscape ecology. Pudoc, WageningenGoogle Scholar
  51. Ter Braak CJF (1989) CANOCO—an extension of DECORANA to analyze species-environment relationships. Hydrobiologia 184:169–170CrossRefGoogle Scholar
  52. Van Asperen EN, Kirby JR, Hunt CO (2016) The effect of preparation methods on dung fungal spores: implications for recognition of megafaunal populations. Rev Palaeobot Palynol 229:1–8CrossRefGoogle Scholar
  53. Van Geel B (1978) A palaeoecological study of holocene peat bog sections in Germany and The Netherlands, based on the analysis of pollen, spores and macro- and microscopic remains of fungi, algae, cormophytes and animals. Rev Palaeobot Palynol 25:1–120CrossRefGoogle Scholar
  54. Van Geel B (1983) Archaeological and palaeoecological aspects of a medieval house terp in a reclaimed raised bog area in North Holland. Berichten ROB 33:419–444Google Scholar
  55. Van Geel B (1986) An Upper Eemian lake deposit from Twente, eastern Netherlands. Rev Palaeobot Palynol 47:31–61CrossRefGoogle Scholar
  56. Van Geel B, Aptroot A (2006) Fossil ascomycetes in Quaternary deposits. Nova Hedwigia 82:313–329CrossRefGoogle Scholar
  57. Van Geel B, Bohncke SJP, Dee H (1980/1981) A palaeoecological study of an upper late glacial and holocene sequence from “de borchert”, The Netherlands. Rev Palaeobot Palynol 31:367–448CrossRefGoogle Scholar
  58. Van Geel B, Buurman J, Brinkkemper O et al (2003) Environmental reconstruction of a Roman Period settlement site in Uitgeest (The Netherlands), with special reference to coprophilous fungi. J Archaeol Sci 30:873–883CrossRefGoogle Scholar
  59. Van Geel B, Coope GR, van der Hammen T (1989) Palaeoecology and stratigraphy of the lateglacial type section at Usselo (the Netherlands). Rev Palaeobot Palynol 60:25–129CrossRefGoogle Scholar
  60. Van Geel B, Gelorini V, Lyaruu A et al (2011) Diversity and ecology of tropical African fungal spores from a 25,000-year palaeoenvironmental record in southeastern Kenya. Rev Palaeobot Palynol 164:174–190CrossRefGoogle Scholar
  61. Van der Wiel AM (1982) A palaeoecological study of a section from the foot of the Hazendonk (Zuid-Holland, The Netherlands), based on the analysis of pollen, spores and macroscopic plant remains. Rev Palaeobot Palynol 38:35–90CrossRefGoogle Scholar
  62. Vidakovic-Cifrek Z, Soric S, Babic M (2013) Growth and photosynthesis of Lemna minor L. exposed to different light conditions and sucrose supplies. Acta Bot Croatica 72:211–219CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of GeoscienceAarhus UniversityAarhus CDenmark
  2. 2.The Danish National MuseumCopenhagen KDenmark
  3. 3.Department of Archaeology and Heritage StudiesAarhus UniversityHøjbjergDenmark
  4. 4.Department of Physics and AstronomyAarhus UniversityAarhus CDenmark

Personalised recommendations