Advertisement

Vegetation History and Archaeobotany

, Volume 28, Issue 1, pp 81–91 | Cite as

Changes in vegetation structure during the Pleistocene–Holocene transition in Guanajuato, central Mexico

  • Gabriela Domínguez-VázquezEmail author
  • Verónica Osuna-Vallejo
  • Valerio Castro-López
  • Isabel Israde-Alcántara
  • James A. Bischoff
Original Article
  • 179 Downloads

Abstract

To investigate the changes in the structure and composition of the vegetation during the Pleistocene–Holocene transition, pollen and macrocharcoal analyses were carried out on samples of sediments taken from a 14.5 m core from Hoya Rincón de Parangueo, a crater lake (maar) in Guanajuato, Mexico. Fossil pollen data from the core suggest that during the last glacial maximum (LGM) the climate in central Mexico was very wet and cold, and the vegetation was open cloud forest, and fires did not occur. During the Pleistocene–Holocene transition, vegetation diversity was high in the study area, but disturbance to vegetation was observed, indicating an open habitat with fewer trees. There was an abrupt change in the composition of the vegetation during the later Holocene, likely signalling a strong change in climate. During the early Holocene the area remained wet, but there was a trend toward drier conditions that became well established at the end of the middle Holocene and into the late Holocene. As a consequence, the structure of the vegetation changed, with more taxa suggesting dryer environments, lasting until the late Holocene, when human disturbance became an important factor affecting vegetation in the area.

Keywords

Last glacial maximum Vegetation Diversity Disturbance Pollen Cloud forest Tropical dry forest Shrubland 

Notes

Acknowledgements

Research grants to the first author from CIC-Universidad Michoacana de San Nicolás de Hidalgo in 2010 and 2011 and National Council of Science and Technology Grant No. 91110 to the first author are gratefully acknowledged, as are the Grant 290611 to Valerio Castro López and Grant 241179 to Verónica Osuna Vallejo. Jorge León Cortés and David Huddart are thanked for their useful comments on the manuscript. Coordinación de la Investigación Científica Grant 2010, 2011.

References

  1. Almeida-Leñero L, Hooghiemstra H, Cleef AM, van Geel B (2005) Holocene climatic and environmental change from pollen records of lakes Zempoala and Quila, central Mexican highlands. Rev Palaeobot Palynol 136:63–92.  https://doi.org/10.1016/j.revpalbo.2005.05.001 CrossRefGoogle Scholar
  2. Arroyo-Cabrales J, Polaco OJ, Laurito CA, Johnson E, Alberdi MT, Valerio AL (2007) The Proboscideans (Mammalia) from Mesoamerica. Quat Int 169–170:17–23.  https://doi.org/10.1016/j.quaint.2006.12.017 CrossRefGoogle Scholar
  3. Barnosky AD, Lindsey EL, Villavicencio NA, Bostelmann E, Hadly EA, Wanket J, Marshall CR (2016) Variable impact of late-Quaternary megafaunal extinction in causing ecological state shifts in North and South America. Proc Natl Acad Sci 113:856–861.  https://doi.org/10.1073/pnas.1505295112 CrossRefGoogle Scholar
  4. Birks HJ (2005) Mind the gap: how open were European primeval forests? Trends Ecol Evol 20:154–156.  https://doi.org/10.1016/j.tree.2005.02.001 CrossRefGoogle Scholar
  5. Borejsza A, Frederick CD (2010) Fluvial response to Holocene climate change in low-order streams of central Mexico. J Quat Sci 25:762–781.  https://doi.org/10.1002/jqs.1353 CrossRefGoogle Scholar
  6. Bradbury JP (1997) Sources of glacial moisture in Mesoamerica. Quat Int 43/44:97–110.  https://doi.org/10.1016/S1040-6182(97)00025-6 CrossRefGoogle Scholar
  7. Broecker WS (2000) Abrupt climate change: causal constraints provided by the paleoclimate record. ‎Earth Sci Rev 51:137–154.  https://doi.org/10.1016/S0012-8252(00)00019-2 Google Scholar
  8. Butzer KW, Butzer EK (1997) The natural vegetation of the Mexican Bajío: archival documentation of a 16th century savanna environment. Quat Int 43/44:161–172.  https://doi.org/10.1016/S1040-6182(97)00032-3 CrossRefGoogle Scholar
  9. Caballero M, Lozano S, Ortega B, Urrutia J, Macias JL (1999) Environmental characteristics of Lake Tecocomulco, northern basin of Mexico, for the last 50,000 years. J Paleolimnol 22:399–411.  https://doi.org/10.1023/A:1008012813412 CrossRefGoogle Scholar
  10. Caballero-Rodríguez D, Correa-Metrio A, Lozano-García S et al (2018) Late-Quaternary spatio-temporal dynamics of vegetation in Central Mexico. Rev Palaeobot Palynol 250:44–52.  https://doi.org/10.1016/j.revpalbo.2017.12.004 CrossRefGoogle Scholar
  11. Carranza-González E (2005) Conocimiento actual de la flora y la diversidad vegetal del estado de Guanajuato, México. Flora Bajío Reg Adyac Fasc Complement 21:1–17Google Scholar
  12. Castro-López V (2013) Influencia climática y antropogénica sobre la vegetación en el Bajío mexicano. Tesis de maestría UMSNHGoogle Scholar
  13. Chang-Martínez L, Domínguez-Vázquez G (2013) Distribución espacial del polen en un gradiente altitudinal en Michoacán, México. Rev Mex Biodiv 84:876–883.  https://doi.org/10.7550/rmb.32417 CrossRefGoogle Scholar
  14. Corlett R (2010) Megafaunal extinctions and their consequences in the tropical Indo-Pacific. In: Haberle S, Stevenson J, Prebble M (eds) Altered ecologies: fire, climate and human influence on terrestrial landscapes. (Terra Australis 32). ANU Press, Canberra, pp 117–132, http://www.jstor.org/stable/j.ctt24h8rj.10
  15. Correa-Metrio A, Lozano-García S, Sosa-Najera MS (2012) Vegetation in western central Mexico during the last 50 000 years: modern analogs and climate in Zacapu Basin. J Quat Sci 27:509–518.  https://doi.org/10.1002/jqs.2540 CrossRefGoogle Scholar
  16. Domínguez-Vázquez G, Islebe GA (2008) Protracted drought during the late Holocene in the Lacandon rain forest, Mexico. Veget Hist Archaeobot 17:327–333.  https://doi.org/10.1007/s00334-007-0131-9 CrossRefGoogle Scholar
  17. Domínguez Vázquez G, Islebe GA, Villanueva R (2004) Modern pollen rain from the Lacandon Forest, Chiapas, México. Rev Paleobot Palynol 131:105–116.  https://doi.org/10.1016/j.revpalbo.2004.03.004 CrossRefGoogle Scholar
  18. Douglas MW, Maddox RA, Howard K, Reyes S (1993) The Mexican monsoon. J Clim 6:1,665-1,677. https://doi.org/10.1175/1520-0442(1993)006%3C1665:TMM%3E2.0.CO;2CrossRefGoogle Scholar
  19. Fægri K, Iversen J (1989) In: Fægri K, Kaland PE, Krzywinski K (eds) Textbook of pollen analysis, 4th edn. Wiley, Chichester.  https://doi.org/10.1002/jqs.3390050310 Google Scholar
  20. Figueroa-Rangel BL, Willis KL, Olvera-Vargas M (2008) 4200 years of pine-dominated upland forest dynamics in west-central Mexico: human or natural legacy? Ecology 89:1,893-1,907.  https://doi.org/10.1890/07-0830.1 CrossRefGoogle Scholar
  21. García E (1973) Modificaciones al sistema de clasificación climática de Köppen (para adaptarlo a las condiciones de la republica mexicana). UNAM, MéxicoGoogle Scholar
  22. Gill JL, Williams JW, Jackson ST, Lininger KB, Robinson GS (2009) Pleistocene megafaunal collapse, novel plant communities, and enhanced fire regimes in North America. Science 326:1,100–1,103.  https://doi.org/10.1126/science.1179504 CrossRefGoogle Scholar
  23. González S, Huddard D, Israde-Alcántara I, Domínguez-Vázquez G, Bischoff J (2014) Tocuila mammoths, Basin of Mexico: Late Pleistocene–Early Holocene stratigraphy and the geological context of the bone accumulation. Quat Sci Rev 96:222–239.  https://doi.org/10.1016/j.quascirev.2014.02.003 CrossRefGoogle Scholar
  24. González S, Huddard D, Israde-Alcántara I, Domínguez-Vázquez G, Bischoff J, Felstead N (2015) Paleoindian sites from the Basin of Mexico: evidence from stratigraphy, tephrochronology and dating. Quat Int 363:4–19.  https://doi.org/10.1016/j.quaint.2014.03.015 CrossRefGoogle Scholar
  25. Grime JP (1977) Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. Am Nat 111:1,169–1,194. http://www.jstor.org/stable/2460262
  26. Grimm EC (2011) Tilia 1.7.16 software. Illinois State Museum, Research and Collection Center, SpringfieldGoogle Scholar
  27. Guevara-Escobar A, González-Sosa E, Suzán-Azpiri H et al (2008) Distribución potencial de algunas leguminosas arbustivas en el altiplano central de México. Agrociencia 42:703–716. http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1405-31952008000600010&lng=es&tlng=es
  28. Haug GH, Hughen KA, Sigman DM, Peterson LC, Röhl U (2001) Southward migration of the intertropical convergence zone through the Holocene. Science 293:1,304–1,308.  https://doi.org/10.1126/science.1059725 CrossRefGoogle Scholar
  29. Hidalgo-Juárez G (2018) Análisis polínico en el gradient altitudinal del Volcán Tacaná. Chiapas, Mexico. Tesis de licenciatura. UMSNH, Morelia, Michoacán, MéxicoGoogle Scholar
  30. Israde-Alcántara I, Velázquez Durán R, Lozano-García MS, Garduño-Monroy VH, Bischoff J, Domínguez Vázquez G (2010) Evolución paleolimnologica del lago de Cuitzeo, Michoacán durante el Pleistoceno-Holoceno. Bol Soc Geol Mex 62:345–357. http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1405-33222010000300004&lng=es&tlng=es
  31. Israde-Alcántara I, Bischoff J, Domínguez-Vázquez G et al (2012) Evidence from Central Mexico supporting the younger Dryas extraterrestrial impact hypothesis. Proc Natl Acad Sci 109:E738–E747.  https://doi.org/10.1073/pnas.1110614109 CrossRefGoogle Scholar
  32. Janzen DH, Martin PS (1982) Neotropical anachronisms: the fruits the gomphotheres ate. Science 215:19–27.  https://doi.org/10.1126/science.215.4528.19 CrossRefGoogle Scholar
  33. Johnson CN (2009) Ecological consequences of Late Quaternary extinctions of megafauna. Proc R Soc Lond Biol 276:2,509–2,519.  https://doi.org/10.1098/rspb.2008.1921 CrossRefGoogle Scholar
  34. Kennett JP, Kennett DJ, Culleton BJ et al (2015) Bayesian chronological analyses consistent with synchronous age of 12,835–12,735 Cal bp for Younger Dryas boundary on four continents. ‎Proc Natl Acad Sci 112:E4,344–E4,353.  https://doi.org/10.1073/pnas.1507146112 CrossRefGoogle Scholar
  35. Kienel U, Bowen SW, Byrne R et al (2009) First lacustrine varve chronologies from Mexico: impact of droughts, ENSO and human activity since AD 1840 as recorded in maar sediments from Valle de Santiago. J Paleolimnol 42:587–609.  https://doi.org/10.1007/s10933-009-9307-x CrossRefGoogle Scholar
  36. Kohler F, Gillet F, Gobat JM, Buttler A (2004) Seasonal vegetation changes in mountain pastures due to simulated effects of cattle grazing. J Veg Sci 15:143–150.  https://doi.org/10.1111/j.1654-1103.2004.tb02249.x CrossRefGoogle Scholar
  37. Labat JN (1995) Végetation du nord-ouest du Michoacán, Mexique. Flora del Bajío y de Regiones Adyacentes. (Fascículo Complementario 8) Instituto de Ecología A.C. Pátzcuaro, MichoacánGoogle Scholar
  38. Lachniet MS, Vazquez-Selem L (2005) Last Glacial Maximum equilibrium line altitudes in the circum-Caribbean (Mexico, Guatemala, Costa Rica, Colombia, and Venezuela). Quat Int 138–139:129–144.  https://doi.org/10.1016/j.quaint.2005.02.010 CrossRefGoogle Scholar
  39. Lozano-García S, Vázquez-Selem L (2005) A high-elevation Holocene pollen record from Iztaccíhuatl volcano, central Mexico. Holocene 15:329–338.  https://doi.org/10.1191/0959683605hl814rp CrossRefGoogle Scholar
  40. Lozano-García S, Ortega B, Caballero M, Urrutia J (1993) Late Pleistocene and Holocene paleoenvironments of Chalco lake, central Mexico. Quat Res 40:332–342.  https://doi.org/10.1006/qres.1993.1086 CrossRefGoogle Scholar
  41. Lozano-García S, Sosa-Najera S, Sugiura Y, Caballero M (2005) 23000 year of vegetation history of the Upper Lerma, a tropical high-altitude basin in Central Mexico. Quat Res 64:70–82.  https://doi.org/10.1016/j.yqres.2005.02.010 CrossRefGoogle Scholar
  42. Luna I, Almeida L, Llorente J (1989) Florística y aspectos fitogeográficos del bosque mesófilo de montaña de las cañadas de Ocuilán, Estados de Morelos y México. Anal Inst Biol Ser Bot 59:63–87Google Scholar
  43. Marín-Leyva A, DeMiguel D, García-Zepeda ML, Ponce J, Arroyo-Cabrales J, Schaaf P, Alberdi M (2015) Dietary adaptability of Late Pleistocene Equus from West Central Mexico. Palaeogeogr Palaeoclimatol Palaeoecol 441:748–757.  https://doi.org/10.1016/j.palaeo.2015.10.019 CrossRefGoogle Scholar
  44. Metcalfe SE, Davies SJ, Braisby JD, Leng MJ, Newton AJ, Terrett NL, O’Hara SL (2007) Long and short–term change in the Pátzcuaro Basin, central Mexico. Palaeogeogr Palaeoclimatol Palaeoecol 247:272–295.  https://doi.org/10.1016/j.palaeo.2006.10.018 CrossRefGoogle Scholar
  45. Metcalfe SE, Jones MD, Davies SJ, Noren A, MacKenzie A (2010) Climate variability over the last two millennia in the North American Monsoon region, recorded in laminated lake sediments from Laguna de Juanacatlán, Mexico Holocene 20:1,195–1,206.  https://doi.org/10.1177/0959683610371994 CrossRefGoogle Scholar
  46. Metcalfe SE, O’Hara SL, Caballero M, Davies SJ (2000) Records of late Pleistocene–Holocene climatic change in Mexico—a review. Quat Sci Rev 19:699–721.  https://doi.org/10.1016/S0277-3791(99)00022-0 CrossRefGoogle Scholar
  47. Oldfield F, Dearing JA (2003) The role of human activities in past environmental change. In: Alverson KD, Bradley RS, Pedersen T (eds) Paleoclimate, global change and the future. Springer, Berlin, pp 143–162.  https://doi.org/10.1007/978-3-642-55828-3_7 CrossRefGoogle Scholar
  48. Ortega B, Vázquez G, Caballero M, Israde-Alcántara I, Lozano-García S, Schaaf P, Torres E (2010) Late Pleistocene: Holocene record of environmental changes in Lake Zirahuen, Central Mexico. J Paleolimnol 44:745–760.  https://doi.org/10.1007/s10933-010-9449-x CrossRefGoogle Scholar
  49. Park J, Byrne R, Bohnel H, Molina-Garza R, Conserva M (2010) Holocene climate change and human impact, central Mexico: a record based on maar lake pollen and sediment chemistry. Quat Sci Rev 29:618–632.  https://doi.org/10.1016/j.quascirev.2009.10.017 CrossRefGoogle Scholar
  50. Raczka M, Bush M, De Oliveira PE (2017) The collapse of megafaunal populations in south eastern Brazil. Quat Res 89:103–118.  https://doi.org/10.1017/qua.2017.60 CrossRefGoogle Scholar
  51. Raygadas-Torres S (2011) Aplicación de técnicas para el reconocimiento de uso de hábitat en dos especies de aves acuáticas residentes del Lago de Cuitzeo. Tesis de Maestría, Facultad de Biología, UMSNH, Morelia, MéxicoGoogle Scholar
  52. Robles-Camacho J, Corona-Chavez P, Moralez-Gamez M, Guzman AF, Domínguez-Vázquez G, Israde-Alcantara I, Oliveros-Morales A (2009) A gomphothere from Lake Patzcuaro, Michoacan, Mexico. Curr Res Pleistocene 26:42–44Google Scholar
  53. Rodríguez-Trejo DA, Fulé PZ (2003) Fire ecology of Mexican pines and a fire management proposal. Int J Wildl Fire 12:23–37.  https://doi.org/10.1071/WF02040 CrossRefGoogle Scholar
  54. Roy PD, Caballero M, Lozano R, Pi T, Morton O (2009) Late Pleistocene–Holocene geochemical history inferred from Lake Tecocomulco sediments, Basin of Mexico. Mexico Geochem J 43:49–64.  https://doi.org/10.2343/geochemj.1.0006 CrossRefGoogle Scholar
  55. Rule S, Brook BW, Haberle SG, Turney CSM, Kershaw AP, Johnson CN (2012) The aftermath of megafaunal extinction: ecosystem transformation in Pleistocene Australia. Science 335:1,483–1,486.  https://doi.org/10.1126/science.1214261 CrossRefGoogle Scholar
  56. Soepboer W, Lotter AF (2009) Estimating past vegetation openness using pollen–vegetation relationships: a modelling approach. Rev Palaeobot Palynol 153:102–107.  https://doi.org/10.1016/j.revpalbo.2008.07.004 CrossRefGoogle Scholar
  57. Solow AR, Roberts DL, Robbirt KM (2006) On the Pleistocene extinctions of Alaskan mammoths and horses. Proc Nat Acad Sci 103:7,351-7,353.  https://doi.org/10.1073/pnas.0509480103 CrossRefGoogle Scholar
  58. Stevenson J, Haberle S (2005). Macro charcoal analysis: a modified technique used by the Department of Archaeology and Natural History. Palaeoworks Technical Papers 5, ANU, AustraliaGoogle Scholar
  59. Stuiver M, Reimer PJ (1993) Extended 14C data base and revised Calib 3.0 14C age calibration program. Radiocarbon 35:215–230.  https://doi.org/10.1017/S0033822200013904 CrossRefGoogle Scholar
  60. Toledo-Aceves T, García-Franco JG, Williams-Linera G, MacMillan K, Gallardo-Hernández C (2014) Significance of remnant cloud forest fragments as reservoirs of tree and epiphytic bromeliad diversity. Trop Conserv Sci 7:230–243.  https://doi.org/10.1177/194008291400700205 CrossRefGoogle Scholar
  61. Torres-Rodríguez E, Lozano-García S, Roy P, Ortega B, Beramendi-Orosco L, Correa-Metrio A, Caballero M (2015) Last Glacial droughts and fire regimes in the central Mexican highlands. J Quat Sci 30:88–99.  https://doi.org/10.1002/jqs.2761 CrossRefGoogle Scholar
  62. Trejo-Vázquez RI (1998) Distribución y diversidad de selvas bajas de México: relaciones con el clima y con el suelo. Tesis de doctorado, Facultad de Ciencias, Universidad Nacional Autónoma de México, México, D.FGoogle Scholar
  63. Van der Waal C, Kool A, Meijer SS et al (2011) Large herbivores may alter vegetation structure of semi-arid savannas through soil nutrient mediation. Oecologia 165:1,095–1,107.  https://doi.org/10.1007/s00442-010-1899-3 CrossRefGoogle Scholar
  64. Vázquez-Selem L, Heine K (2004) Late Quaternary glaciation in Mexico. In: Ehlers J, Gibbard PL (eds) Quaternary glaciations—extent and chronology, part 3: South America, Asia, Africa, Australia, Antarctica. Elsevier, Amsterdam, pp 233–242.  https://doi.org/10.1016/S1571-0866(04)80129-5 Google Scholar
  65. Vera FWM (2000) Grazing ecology and forest history. CABI Publishing, New York.  https://doi.org/10.1079/9780851994420.0000 CrossRefGoogle Scholar
  66. Vera FWM, Bakker ES, Olff H (2006) Large herbivores: missing partners of western European light demanding tree and shrub species? In: Danell K, Duncan P, Bergstrom R, Pastor J (eds) Large herbivore ecology, ecosystem dynamics and conservation. Cambridge University Press, Cambridge, pp 203–231.  https://doi.org/10.1017/CBO9780511617461.009 CrossRefGoogle Scholar
  67. Welch RM, Asefi S, Zeng J et al (2008) Biogeography of tropical montane cloud forests. Part I: remote sensing of cloud-base heights. J Appl Meteorol Climatol 47:960–975.  https://doi.org/10.1175/2007JAMC1819.1 CrossRefGoogle Scholar
  68. Wolbach W, Ballard JP, Mayewski PA et al (2018) Extraordinary biomass-burning episode and impact winter triggered by the Younger Dryas cosmic impact ~ 12,800 years ago. Part 2: Lake, marine, and terrestrial sediments. J Geol 126,  https://doi.org/10.1086/695704
  69. Zarekia S, Arzani H, Jafari M, Javadi SA, Jafari AA, Esfahan EZ (2013) Changes of vegetation structure and biomass in response to the livestock grazing in steppe rangelands of Iran. J Anim Plant Sci 23:1,466–1,472Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Universidad Michoacana de San Nicolás de Hidalgo, Facultad de Biología. Edificio R. Gral. Francisco J. Múgica. CU. Felicitas del RíoMoreliaMexico
  2. 2.Universidad Michoacana de San Nicolás de Hidalgo, INICIT. Edificio U-4. Gral. Francisco J. Múgica. CU. Felicitas del RíoMoreliaMexico
  3. 3.United States Geological SurveyMenlo ParkUSA

Personalised recommendations